
Chapter 1

MPI - lecture 10

1.1 Smooth optimization

Optimization methods overview

Examples of op-
timization in IT

• Clustering

• Classification

• Model fitting

• Recommender systems

• . . .

Optimization
methods

Optimization methods can be:

1. discrete, when the support is made of several disconnected pieces (usu-
ally finite);

2. smooth, when the support is connected (we have a derivative).

They are further distinguished based on how the method calculates a so-
lution:

1. direct, a finite numeber of steps;

2. iterative, the solution is the limit of some approximate results;

1

CHAPTER 1. MPI - LECTURE 10 2

3. heuristic, methods quickly producing a solution that may not be optimal.

Methods are also classified based on randomness:

1. deterministic;

2. stochastic, e.g., evolution, genetic algorithsm,

CHAPTER 1. MPI - LECTURE 10 3

Smooth optimization methods

Gradient de-
scent methods

Goal: find local minima of f : Df → R, with Df ⊂ Rn.

We assume that f , its first and second derivatives exist and are continuous
on Df .

We shall describe an iterative deterministic method from the family of
descent methods.

Descent method
- general idea

Let x(1) ∈ Df .

We shall construct a sequence x(k), with k = 1, 2, . . ., such that

x(k+1) = x(k) + t(k)∆x(k),

where ∆x(k) is a suitable vector (in the direction of the descent) and t(k) is
the length of the so-called step.

Our goal is to have f
(
x(k+1)) < f

(
x(k)), except when x(k) is already a

point of local minimum.
Descent method
- algorithm
overviewLet x ∈ Df .

1. Select ∆x;

2. Select t > 0;

3. Calculate x+ t∆x and store it in x;

4. Repeat this loop until the stopping criterion is satisfied.

CHAPTER 1. MPI - LECTURE 10 4

For instance, a suitable stopping criterion may be the closeness to 0 of the
norm of the gradient.

Descent method
- choice of t

For small t we approximately have:

f(x+ t∆x) ≈ f(x) + t∇f(x) ·∆x.

Thus, we need:
∇f(x) ·∆x < 0.

The ideal choice of t is a point of local minimum of the mapping

s 7→ f(x+ s∆x)

for some s > 0.

We may use any method to solve this subproblem (e.g., analytic solution,
Newton method, etc). We shall describe the backtracking method.

Backtracking

We have f , ∆x ∈ Rn, x ∈ Df , and parameters α ∈ (0, 1/2), β ∈ (0, 1).
Set t := 1. Replace t by βt until f(x+ t∆x) ≤ f(x) + αt∇f(x) ·∆x.

CHAPTER 1. MPI - LECTURE 10 5

The cut of the graph of f over the line x + t∆x is in black, the tangent
line f(x) + t∇f(x) ·∆x is in blue, and the acceptable limit for descent f(x) +
αt∇f(x) ·∆x is in red.

Choice of ∆x
(1/2)

Assume we are at the point x and start to move in the direction v. We
have again

f(x+ v) ≈ f(x) +∇f(x) · v.

In order to descend, we need ∇f(x) · v < 0. To find the best direction
(where the descent is the greatest), we need to select a norm ‖ · ‖ on Rn, and
then solve

∆x = argmin{∇f(x) · v : ‖v‖ = 1} · .

For a symmetric positively definite matrix P ∈ Rn,n we define the following
norm:

‖v‖P =
√
vTPv, v ∈ Rn.

The direction of the greatest descent is given by

∆x = −P−1∇f(x)T .

Choice of ∆x
(2/2)

The choice ‖ · ‖2 (Euclidean norm) leads to the gradient method. The
direction of the greatest descent of f at a point x is −∇f(x).

That is, we set
∆x(k) = −∇f(x(k))·

Is this the best possible choice? If we have more information on f , we may
obtain better results using Newton’s method:

∆x(k) = −
(
∇2f(x(k))

)(
∇f(x(k)))T .

The direction of the greatest descent is found with respect to the norm
‖ · ‖P with P = ∇2f(x(k)), i.e., the Hessian matrix of f at the point x(k).

Momentum

CHAPTER 1. MPI - LECTURE 10 6

We shall add a momentum (sometimes also called acceleration) to the
direction of the descent:

∆x(k) = γx(k−1) + argmin{∇f(x) · v : ‖v‖ = 1},

where γ ∈ [0, 1) is the dampening parameter. For γ = 0 we retrieve the
previous methods.

Curve fitting

Assume that we have some data x1, x2, . . . , xN ∈ Rn and an unknown
(possibly non-deterministic) mapping f : Rn → R for which we have some
observations yi = f(xi).

We want to find an approximation of f .

We shall find a curve that best fits the data, i.e., minimize the following

N∑
i=1

(yi − β0 − β1xi,1 − β2xi,2 − · · · − βnxin)2 ,

with xi = (xi,1, xi,2, . . . , xi,n)T .
Polynomial
regression

The task

minimize
N∑
i=1

(yi − β0 − β1xi,1 − β2xi,2 − · · · − βnxi,n)2

is interpreted as finding the best curve that models our data using

yi = β0 + xTi β + εi,

which is the approximation of the mapping f if the error term εi is small.

Why polynomial regression?

The data may be in the following form:

xi = (zi, z2
i , z

3
i , . . . , z

n
i)T for some zi ∈ R.

Ordinary least
squares (1/2)

CHAPTER 1. MPI - LECTURE 10 7

If N > n, the minimization problem can always be solved analytically:
β0
β1
...
βn

 = (XTX)−1XT


y1
y2
...
yN


where

X =


1 x1,1 x1,2 · · · x1,n
1 x2,1 x2,2 · · · x2,n
...

...
...

1 xN,1 xN,2 · · · xN,n

 .

The matrix X is given by

√√√√ N∑
i=1

(yi − β0 − β1xi,1 − β2xi−2 − · · · − βnxi,n)2 =

∥∥∥∥∥∥∥∥∥∥


y1
y2
...
yN

− X


β0
β1
...
βn


∥∥∥∥∥∥∥∥∥∥

2
.

Ordinary least
squares (2/2)

The solution 
β0
β1
...
βn

 = (XTX)−1XT


y1
y2
...
yN


is called ordinary least square estimate (OLS).

1.2 Numerical Differentiation

Introduction and motivation

Motivation

Differentiation is a basic mathematical operation. It is important to have
good methods to compute and manipulate derivatives. Classical methods
(real calculus or complex calculus) are of limited value on computers, since
most common programming environments do not have support for symbolic
computations.

CHAPTER 1. MPI - LECTURE 10 8

Another complication is the fact that in many practical applications a
function is only known at a few isolated points. For example, we may measure
the position of a car every minute via a GPS (Global Positioning System)
unit, and we want to compute its speed. When the position is known at all
times (as a mathematical function) we can find the speed by differentiation.

But when the position is only known at isolated times, this is not possible.

The solution is to use approximate methods (i.e., numerical methods) of
differentiation.

Main idea

The basic strategy for deriving numerical differentiation methods is to
evaluate a function at a few points, find the polynomial that interpolates
the function at these points, and use the derivative of this polynomial as an
approximation to the derivative of the function.

This technique also allows us to keep track of the truncation error, the
mathematical error committed by differentiating the polynomial instead of
the function itself.

In addition to the truncation error, there are also round-off errors, un-
avoidable when using floating-point numbers to perform calculations with real
numbers.

Numerical differentiation is very sensitive to round-off errors, but these
errors are quite easy to analyse.

The problem

Let f be a given function that is known at a number of isolated points.

The problem of numerical differentiation consists in computing an approxi-
mation to the derivative f ′ of f by suitable combinations of the known function
values of f .

CHAPTER 1. MPI - LECTURE 10 9

Newton’s difference quotient

The basic idea
(1/2)

The standard definition of f ′(a) is by a limit process,

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

.

In the following we will assume that this limit exists, in other words that
f is differentiable at x = a.

An immediate and natural approximation of f ′(a) is then

f ′(a) ≈ f(a+ h)− f(a)
h

,

where h is a (small) positive number.
This approximation is called the Newton’s (difference) quotient.

The basic idea
(2/2)

The straight line p1 that interpolates f at a and a+ h is given by

p1(x) = f(a) + f(a+ h)− f(a)
h

(x− a).

The derivative p1(x) is exactly the Newton’s quotient of f at a.
Equivalently, the slope of p1 at a is an approximation to the slope of f at

a.

CHAPTER 1. MPI - LECTURE 10 10

Left-sided
version

An alternative approximation is given by the left-sided version:

f ′(a) ≈ f(a)− f(a− h)
h

.

This approximation behaves similarly, and the analysis is also completely
analogous to that of the more common right-sided version.

Example

Let us consider f(x) = sin x at a = 0.5 (using binary64 floating-point
numbers).

We know that the exact derivative is f ′(x) = cosx, so f ′(a) ≈ 0.8775825619
with 10 correct digits.

h
f(a+ h)− f(a)

h
f ′(a)− f(a+ h)− f(a)

h

10−1 0.8521693479 2.5 · 10−2

10−2 0.8751708279 2.4 · 10−3

10−3 0.8773427029 2.4 · 10−4

10−4 0.8775585892 2.4 · 10−5

10−5 0.8775801647 2.4 · 10−6

10−6 0.8775823222 2.4 · 10−7

CHAPTER 1. MPI - LECTURE 10 11

The approximation improves with decreasing h, as expected.
Truncation
error

To analyse errors in numerical differentiation, we use Taylor polynomials
with remainders.

f(a+ h) = f(a) + h f ′(a)h
2

2 f
′′(ξh),

where ξh ∈ (a, a+ h).

Thus
f ′(a)− f(a+ h)− f(a)

h
= −h2 f

′′(ξh).

This is called the truncation error of the approximation.
Example

Let us consider again f(x) = sin x at a = 0.5. We have f ′′(x) = − sin x,
so that the truncation error is

f ′(a)− f(a+ h)− f(a)
h

= h

2 sin ξh with ξh ∈ (0.5, 0.5 + h).

For h = 0.1 the error lies in the interval

[0.05 sin 0.5, 0.05 sin 0.6] = [2.397 · 10−2, 2.823 · 10−2].

As h became even smaller, the number ξh will approach 0.5 and sin ξh will
approach sin 0.5 ≈ 0.479426. So, for h = 10−n, the error tends to

10−n

2 sin 0.5 ≈ 0.2397 · 10−n.

Approximation
of the trunca-
tion errorIn general, if f ′′(x) is continuous, then ξh will approach a when h goes to

zero. Thus we can approximate f ′′(ξh) ≈ f ′′(a).

CHAPTER 1. MPI - LECTURE 10 12

Theorem 1. The truncation error when using Newton’s quotient to approxi-
mate f ′(a) is given approximately by∣∣∣∣f ′(a)− f(a+ h)− f(a)

h

∣∣∣∣ ≈ h

2
∣∣f ′′(a)

∣∣ .

Upper bound on
the truncation
errorThe exact value of the truncation error is given by∣∣∣∣f ′(a)− f(a+ h)− f(a)

h

∣∣∣∣ = h

2
∣∣f ′′(ξh)

∣∣ with ξh ∈ (a, a+ h).

Theorem 2. Suppose f has continuous derivatives up to order two near a.
The truncation error is bounded by∣∣∣∣f ′(a)− f(a+ h)− f(a)

h

∣∣∣∣ ≤ h

2 max
x∈[a,a+h]

∣∣f ′′(x)
∣∣ .

Note that we included the extremal values of the interval [a, a+ h].
Round-off error
- an example

When computing the approximation with small values of h we have to
perform the critical operation f(a + h) − f(a), i.e., the subtraction of two
almost equal numbers. This may lead to large round-off errors.

Let us consider again f(x) = sin at a = 0.5 and the correct value with ten
digits is f ′(0.5) ≈ 0.8775825619. If we check values of h smaller than 10−6 we
find

CHAPTER 1. MPI - LECTURE 10 13

h
f(a+ h)− f(a)

h
f ′(a)− f(a+ h)− f(a)

h

10−7 0.8775825372 2.5 · 10−8

10−8 0.8775825622 −2.9 · 10−10

10−9 0.8775825622 −2.9 · 10−10

10−11 0.8775813409 1.2 · 10−6

10−14 0.8770761895 5.1 · 10−4

10−15 0.8881784197 −1.1 · 10−2

10−16 1.110223025 −2.3 · 10−1

10−17 0.0000000000 8.8 · 10−1

Round-off error
in the function
valuesIn a previous lecture we saw that the relative error ε1 in double precision

is bounded by

|ε1| =
∣∣∣∣fl(f(a))− f(a)

f(a)

∣∣∣∣ ≤ 5 · 2−53 ≈ 6 · 10−16.

Note that ε1 depends both on a and f .

Let us denote by ε∗ the maximum relative error that occurs when real
numbers are represented by floating-point numbers, and there is no underflow
or overflow.

Thus

fl(f(a)) = f(a)(1 + ε1) and fl(f(a+ h)) = f(a+ h)(1 + ε2),

where |εi| ≤ ε∗ for i = 1, 2.
Round-off error
in the derivative
(1/2)The main source of round-off in subtraction is the replacement of the

numbers to be subtracted by nearest floating-point numbers. We therefore
consider the computed approximation to be

fl(f(a+ h))− fl(f(a))
h

,

CHAPTER 1. MPI - LECTURE 10 14

and ignore the error in the division by h. Hence

f ′(a)− fl(f(a+ h))− fl(f(a))
h

= f ′(a)− f(a+ h)− f(a)
h

− f(a+ h)ε2 − f(a)ε1
h

= −h2 f
′′(ξh) −f(a+ h)ε2 − f(a)ε1

h
,

where ξh ∈ (a, a+ h).

The truncation error is proportional to h, while the round-off error is
proportional to 1/h.

Round-off error
in the derivative
(2/2)When h is small, we may assume that f(a+ h) ≈ f(a). Thus

f ′(a)− fl(f(a+ h))− fl(f(a))
h

≈ −h2 f
′′(a)− ε2 − ε1

h
f(a).

The most uncertain term is ε2 − ε1. The magnitude of relative errors in
binary64 is about 10−17. If they are of opposite signs, this magnitude may
be doubled, so we replace ε2 − ε1 by 2ε̃(h).

f ′(a)− fl(f(a+ h))− fl(f(a))
h

≈ −h2 f
′′(a)− 2ε̃(h)

h
f(a).

Hence

ε̃(h) ≈ − h

2f(a)

(
f ′(a)− fl(f(a+ h))− fl(f(a))

h
+ h

2 f
′′(a).

)

Round-off error
in the deriva-
tive - an exam-
ple (1/2)Let us consider again f(x) = sin at a = 0.5 and the correct value with ten

digits is f ′(0.5) ≈ 0.8775825619.

CHAPTER 1. MPI - LECTURE 10 15

h
f(a+ h)− f(a)

h
f ′(a)− f(a+ h)− f(a)

h
ε̃(h)

10−7 0.85775825372 2.5 · 10−8 −7.6× 10−17

10−8 0.8775825622 −2.9 · 10−10 2.8× 10−17

10−9 0.8775825622 −2.9 · 10−10↓ 5.5× 10−19↓
10−11 0.8775813409 1.2 · 10−6 ↑ −1.3× 10−17↑
10−14 0.8770761895 5.1 · 10−4 5.3× 10−18

10−15 0.8881784197 −1.1 · 10−2 1.1× 10−17

10−16 1.110223025 −2.3 · 10−1 2.4× 10−17

10−17 0.0000000000 −9.2 · 10−1 −9.2× 10−18

Round-off error
in the deriva-
tive - an exam-
ple (2/2)Numerical approximation of the derivative of f(x) = sin x at x = 0.5 using

Newton’s quotient. The plot is a log10− log10 plot.

The point −10 on the horizontal axis corresponds to h = 10−10, and the
point −6 on the vertical axis corresponds to an error of 10−6.

Approximation
of the round-off
errorThe round-off error is given by∣∣∣∣f ′(a)− fl(f(a+ h))− fl(f(a))

h

∣∣∣∣ ≈ ∣∣∣∣−h2 f ′′(a)− ε2 − ε1
h

f(a)
∣∣∣∣

≤ h

2
∣∣f ′′(a)

∣∣+ |ε2 − ε1|
h

|f(a)|

≤ h

2
∣∣f ′′(a)

∣∣+ ε2|+ |ε1|
h

|f(a)|

≤ h

2 |f
′′(a)|+ 2 max{ε1, ε2}

h
|f(a)|

CHAPTER 1. MPI - LECTURE 10 16

Theorem 3. The round-off error when using Newton’s quotient to approxi-
mate f ′(a) is roughly bounded by∣∣∣∣f ′(a)− fl(f(a+ h)− fl(f(a))

h

∣∣∣∣ . h

2 |f
′′(a)|+ 2ε(h)

h
|f(a)|

where ε(h) = max{ε1, ε2}.

Upper bound on
the round-off er-
ror

Theorem 4. Suppose f has continuous derivatives up to order two near a.
The round-off error is (approximatively) bounded by∣∣∣∣f ′(a)− fl(f(a+ h))− fl(f(a))

h

∣∣∣∣ ≤ h

2M1 + 2ε∗

h
M2.

where M1 = max
a∈[a,a+h]

|f ′′(x)| and M2 = max
x∈[a,a+h]

|f(x)|.

Optimal choice
of h

The previous example shows that there is an optimal value of h which
minimises the total error. If, instead of εh we consider ε∗ we have the error
estimate

E(a, h) = h

2 |f
′′(a)| + 2ε∗

h
|f(a)|.

To find the value of h which minimises this expression, let us consider

E(a, h)′ = |f
′′(a)|
2 − 2ε∗

h2 |f(a)|.

If we solve the equation E(a, h)′ = 0 we obtain the approximate optimal
value.

Theorem 5. Suppose f has continuous derivatives up to order two near a.
The value of h which minimizes the total error (truncation error + round-off
error) is approximately

h∗ ≈ 2
√
ε∗|f(a)|√
|f ′′(a)|

.

CHAPTER 1. MPI - LECTURE 10 17

Other methods
(1/2)

• Symmetric version of Newton’s quotient
We find an approximation to f ′(a) using the values: f(a−h), f(a) and f(a+h).

f ′(a) ≈ f(a+ h)− f(a− h)
2h .

Error:
∣∣∣∣f ′(a)− fl(f(a+ h)− fl(f(a− h)))

2h

∣∣∣∣ . h2

6 |f
′′′(a)|+ ε∗|f(a)|

h
.

Other methods
(2/2)

• A four-point differentiation method
We choose as interpolation points a− 2h, a− h, a+ h and a+ 2h.

f ′(a) ≈ f(a− 2h)− 8f(a− h) + 8f(a+ h)− f(a+ 2h)
12h .

∣∣∣f ′(a)−
fl(f(a− 2h)− 8fl(f(a− h))) + 8fl(f(a+ h)− fl(f(a+ 2h))

12h

∣∣∣ . h4

18
|f (v)(a)|+

3ε∗

h
|f(a)|.

CHAPTER 1. MPI - LECTURE 10 18

	MPI - lecture 10
	Numerical Differentiation

