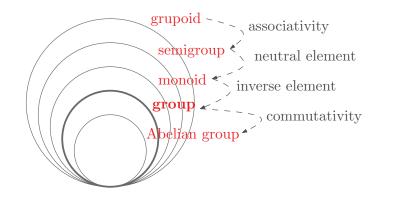
Chapter 1

MPI - lecture 5

1.1 Reminder and Motivation

Reminder of the last lecture

Hierarchy of structures of type "a set and a binary operation"



Example (1/4)

Example 1. Consider the set $\mathbb{Z}_{12} = \{0, 1, 2, \dots, 11\}$ with the addition mod 12.

- the set \mathbb{Z}_{12} is closed under this operation, i.e., it is a **groupoid** groupoid;
- the operation is associative, so it is a **semigroup**semigroup;

- number 0 is the neutral element, so it is a **monoid**monoid;
- the inverse of a number $k \neq 0$ is 12 k and the inverse of 0 is 0, so it is a group group;
- the operation is commutative, thus we have an **Abelian group**.

Let $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ be the set of the residue classes modulo n.

The group $(\mathbb{Z}_n, +_{(\text{mod }n)})$ is the additive group modulo n; it is denoted by \mathbb{Z}_n^+ .

Example (2/4)

Question: Which other set M forms a group with the addition (mod 12)?

In order for the operation to be well defined, we must have $M \subset \mathbb{Z}_{12}$:

Question (refined): Which subset of \mathbb{Z}_{12} forms a group with the addition (mod 12)?

Answer: There are quite a lot of them. To find out how to discover them, let us ask this subquestion:

Sub-question: Which is the smallest subset of \mathbb{Z}_{12} that forms a group with addition (mod 12) and contains the number 2?

Example (3/4)

We are looking for a set $M \subset \mathbb{Z}_{12}$ such that $2 \in M$ and (M, +(mod 12)) is a group:

- M must be closed under addition mod 12:
 - it must contain 2 + 2 = 4, 2 + 4 = 6, 4 + 6 = 10, ...
 - the set $\{0, 2, 4, 6, 8, 10\}$ is closed under this operation, so we have a groupoid;
- the operation remains associative, so it is a semigroup;
- 0 remains the neutral element, so it is a monoid;
- each element has its inverse in the set (the set is closed under inversion), so it is a group.

The wanted set is $M = \{0, 2, 4, 6, 8, 10\}$: we say that M is a subgroup generated by the set $\{2\}$.

Example (4/4)

Similarly, as we have generated the set for the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$\{0\} \rightarrow$	$\{0\}$	
$\{1\} ightarrow$	$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$	$\leftarrow \{11\}$
$\{2\} ightarrow$	$\{0, 2, 4, 6, 8, 10\}$	$\leftarrow \{10\}$
$\{3\} \rightarrow$	$\{0, 3, 6, 9\}$	$\leftarrow \{ 9 \}$
$\{4\} \rightarrow$	$\{0, 4, 8\}$	$\leftarrow \{8\}$
$\{5\} ightarrow$	$\{0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7\}$	$\leftarrow \{7\}$
$\{6\} ightarrow$	$\{0,6\}$	

Back to the original question: there exist 6 different sets $M \subseteq \mathbb{Z}_{12}$ such that $(M, + \pmod{12})$ is a group.

1.2 Subgroups

Definition of subgroup

Definition 2. Let $G = (M, \circ)$ be a group. A subgroup of the group G is a pair $H = (N, \circ)$ such that:

- $N \subseteq M$ and $N \neq \emptyset$,
- H is a group.
- Idea of substructures with the same properties as the original structure: compare for instance with a subspace of a linear (vector) space.
- Similarly, we can define subgroupoids, subsemigroups, submonoids,...
- A binary operation in the group $G = (M, \circ)$ is considered to be a mapping from $M \times M$ to M. The operation in a subgroup $H = (N, \circ)$ is, to be precise, the restriction of this operation to the set $N \times N$.

Trivial proper

groups

sub-

and

In each group $G = (M, \circ)$, there always exist at least two subgroups (if M contains only one element the two coincide):

- the group containing only the neutral element: $(\{e\}, \circ)$,
- and the group itself $G = (M, \circ)$.

These two groups are the trivial subgroups; other subgroups are non-trivial or proper subgroups.

Question 3. If H is a subgroup of the group G, is the neutral element of H identical to the neutral element of G?

Intersection of subgroups

Theorem 4. Let H_1, H_2, \ldots, H_n , which $n \ge 1$, be subgroups of a group $G = (M, \circ)$. Then

$$H' = \bigcap_{i=1,2,\dots,n} H_i$$

is also a subgroup of G.

Power of an element

Definition 5. Let $G = (M, \circ)$ be a group with neutral element e. We define for each element $a \in M$ and each positive $n \in \mathbb{N}$ the n-th power of the element a as

$$a^{0} = e$$

$$a^{n} = \underbrace{a \circ a \circ \cdots \circ a}_{n \text{ times}}$$

$$a^{-n} = (a^{-1})^{n} = \underbrace{a^{-1} \circ a^{-1} \circ \cdots \circ a^{-1}}_{n \text{ times}}$$

Note that $a \circ a \circ \cdots \circ a$ can by written without brackets thanks to associativity (for a non-associative operation the result would depend on the order...).

For all $n, m \in \mathbb{N}$ the following "natural" equalities are true:

• $a^{n+m} = a^n \circ a^m$,

• $a^{nm} = (a^n)^m$.

For the additive notation of a group G = (M, +), we define the *n*-th multiple of the element *a* and we denote it by $n \times a$ (resp. $-n \times a = n \times (-a)$).

Order of a (sub)group

Definition 6. The order of a (sub)group $G = (M, \circ)$, denoted |G|, is its number of elements. If M is an infinite set, the order is infinite. According to the order we distinguish between finite and infinite groups.

Example 7. The group \mathbb{Z}_{12}^+ is of order 12. It has 6 subgroups:

- two trivial: {0} and {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
- and four proper: $\{0, 6\}$, $\{0, 4, 8\}$, $\{0, 3, 6, 9\}$, and $\{0, 2, 4, 6, 8, 10\}$.

of order respectively 1, 2, 3, 4, 6 and 12.

(Left) cosets of a subgroup

Let G be a group and H be one of its subgroups. The (left) coset of H in G with respect to an element $g \in G$ is the set

 $gH = \{gh : h \in H\}$ (or g + H in additive notation)

Example 8. Let us consider the subgroup $H = \{0, 3, 6, 9\}$ of \mathbb{Z}_{12} . Find g + H for all $g \in \mathbb{Z}_{12}$.

The index of H in G, denoted [G : H], is the number of different cosets of H in G.

Lagrange's Theorem

Theorem 9. Let H be a subgroup of a finite group G. The order of H divides the order of G. More precisely, $|G| = [G : H] \cdot |H|$.

To prove Lagrange's Theorem we need the following lemma.

Lemma 10. For all $a, b \in G$ one has |aH| = |bH|.

This statement connects the abstract structure of a group with divisibility and also with the notion of prime numbers!

Consequence: A group with prime order has only trivial subgroups!

Question 11. Let G be a group of order n and $k \in \mathbb{N}$ be such that $k \mid n$. Is there any subgroup of G of order k?

(1/2)**Question**: How to find the smallest subgroup of a group $G = (M, \circ)$ containing a given nonempty set $N \subset M$?

Definition 12. Let $G = (M, \circ)$ be a group and $N \subset M$ a nonempty set. The smallest subgroup of G containing N is the subgroup generated by N and is denoted by $\langle N \rangle$.

In particular, for a singleton $N = \{a\}$ we use the notation $\langle a \rangle = \langle \{a\} \rangle$.

Example 13. For the group \mathbb{Z}_{12}^+ , we have proven that $\langle 2 \rangle = (\{0, 2, 4, 6, 8, 10\}, (+mod \ 12)).$

Definition 14. If for a set M it holds that $\langle M \rangle = G$, we say that M is a generating set of G.

> gener-Group ated by a set (2/2)

Example 15. The group \mathbb{Z}_{12}^+ is generated, for instance, by the sets $\{1\}$ and $\{5\}, i.e.$

$$\langle 1 \rangle = \langle 5 \rangle = \mathbb{Z}_{12}^+.$$

Theorem 16. Let $G = (M, \circ)$ be a group and $N \subset M$ a nonempty set. The following holds:

• the subgroup $\langle N \rangle$ equals the intersection of all subgroups containing N, i.e.

 $\langle N \rangle = \bigcap \{ H : H \text{ is a subgroup of } G \text{ containing } N \}$

• all elements belonging to $\langle N \rangle$ can be obtained by means of "group span", *i.e.*,

 $\left\{a_1^{k_1} \circ a_2^{k_2} \circ \cdots \circ a_n^{k_n} : n \in \mathbb{N}, a_i \in N, k_i \in \mathbb{Z}\right\}.$

Group

generated by a set

1.3 Cyclic groups

We have seen that the additive group \mathbb{Z}_{12}^+ is equal to $\langle 1 \rangle$, $\langle 5 \rangle$, $\langle 7 \rangle$, and $\langle 11 \rangle$.

The following theorem says this is true in general:

Theorem 17. An additive group modulo n is equal to $\langle k \rangle$ if and only if k and n are coprime numbers.

Proof. This statement is a consequence of a general theorem which will be proven later and of the fact that $\langle 1 \rangle = \mathbb{Z}_n^+$ for all $n \geq 2$.

Examples of groups generated by one element (2/2)

The multiplicative group modulo p, denoted \mathbb{Z}_p^{\times} , where p is a prime numelement (2/2) ber, is the set $\{1, 2, \ldots, p-1\}$ with the operation of multiplication modulo p.

Example 18. Is there a one-element set generating the group \mathbb{Z}_{11}^{\times} ?

Yes, for example $\langle 2 \rangle = \mathbb{Z}_{11}^{\times}$.

On the other hand, $\langle 3 \rangle = (\{1, 3, 4, 5, 9\}, (mod \ 11)).$

Finding the generator(s) of a multiplicative group \mathbb{Z}_p^{\times} is more complicated than for an additive group \mathbb{Z}_p^+ .

Multiplicative groups have more complicated and interesting structure.

Definition of cyclic group

Definition 19. A group $G = (M, \circ)$ is cyclic if there exists an element $a \in M$ such that $\langle a \rangle = G$.

This element is a generator of the cyclic group.

- \mathbb{Z}_n^+ is a cyclic group for every n and its generators are all positive numbers $k \leq n$ coprime with n.
- the infinite group (Z, +) is cyclic and it has just two generators: 1 and −1.
- \mathbb{Z}_{11}^{\times} is cyclic, and 2 is a generator.

Examples

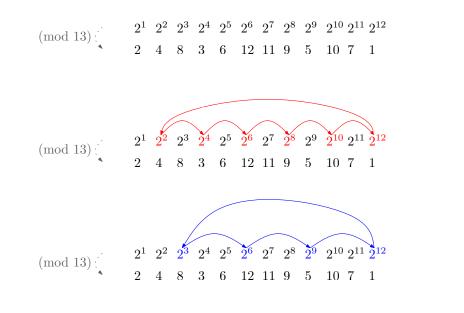
ated by

element (1/2)

groups

of

gener-



Why "cyclic"?

Consider the multiplicative group \mathbb{Z}_{13}^{\times} .

Again, 2 is a generator. If we repeatedly compose the element 2 with itself we successively get all elements of the group: $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 3$, ..., $2^{12} = 1$.

The 13-th power is again the number 2 and so the sequence of powers is indeed stuck in a cycle.

subgroups: $\{1, 3, 4, 9, 10, 12\}$, $\{1, 5, 8, 12\}$, $\{1, 3, 9\}$, $\{1, 12\}$. generators: 2, 6, 7, 11.

Fermat's Theorem (1/2)

Theorem 20. In a cyclic group $G = (M, \circ)$ of order n, for all elements

$$\pmod{13} \begin{pmatrix} 2^1 & 2^2 & 2^3 & 2^4 & 2^5 & 2^6 & 2^7 & 2^8 & 2^9 & 2^{10} & 2^{11} & 2^{12} \\ 2 & 4 & 8 & 3 & 6 & 12 & 11 & 9 & 5 & 10 & 7 & 1 \\ \end{pmatrix}$$

 $(mod \ 13) \begin{pmatrix} 2^{1} & 2^{2} & 2^{3} & 2^{4} & 2^{5} & 2^{6} & 2^{7} & 2^{8} & 2^{9} & 2^{10} & 2^{11} & 2^{12} \\ 2 & 4 & 8 & 3 & 6 & 12 & 11 & 9 & 5 & 10 & 7 & 1 \\ \end{pmatrix}$ $(mod \ 13) \begin{pmatrix} 2^{1} & \bigstar & \bigstar & \bigstar & 2^{5} & \bigstar & 2^{7} & \bigstar & \bigstar & 0 & 2^{11} & \bigstar^{2} \\ 2 & \bigstar & \bigstar & 6 & \bigstar & 11 & \bigstar & \bigstar & 7 & \bigstar \\ \end{pmatrix}$

 $a \in M$, it holds that

$$a^n = e$$

Where e is the neutral element of G.

Proof. Consider a sequence of elements from $M: a, a^2, a^3, a^4, \ldots$ Denote q the smallest number such that $a^q = e$. Clearly $q \le n$ (why?!) The set a, a^2, \cdots, a^q is the subgroup $\langle a \rangle$ and has order q By Lagrange's Theorem, we have that q divides n, i.e., there exists $k \in \mathbb{N}$ such that n = qk. We have $a^n = a^{qk} = (a^q)^k = e^k = e$.

Fermat's Theorem (2/2)

 \mathbb{Z}_p^{\times} is always a cyclic group (it is not trivial to prove it) and the order of this group is p-1.

Applying the previous statement to \mathbb{Z}_p^{\times} we obtain the well-known Fermat's Little Theorem.

Corollary 21 (Fermat's Little Theorem). For an arbitrary prime number p and an arbitrary $1 \le a < p$ we have that

 $a^{p-1} \equiv 1 \pmod{p}.$

How to find all generators (1/2)

Generally, to find all generators is not an easy task (e.g., in groups \mathbb{Z}_p^{\times} we are not able to do it algorithmically); but if we have one, it is easy to find all the others.

Theorem 22. If (G, \circ) is a cyclic group of order n and a is one of its generator, then a^k is a generator if and only if k and n are coprime.

To prove the Theorem we use the following

Lemma 23. Let $D = \{mk + \ell n \mid m, \ell \in \mathbb{Z}\}$ and $d = \min\{|a| \mid a \in D \setminus \{0\}\}$. Then $d = \gcd(k, n)$.

How to find all generators (2/2)

Corollary 24. In a cyclic group of order n, the number of all generators is equal to $\varphi(n)$.

Where φ is the Euler's (totient) function), which assigns to each integer n the number of integers less than n that are coprime with n

 \mathbb{Z}_p^{\times} is a cyclic group of order p-1 and thus it has $\varphi(p-1)$ generators.

An effective algorithm for evaluating $\varphi(n)$ does not exist; if it existed, we would be able to find the integer factorization of arbitrarily large n and RSA would not be safe!

Subgroups of cyclic group are cyclic

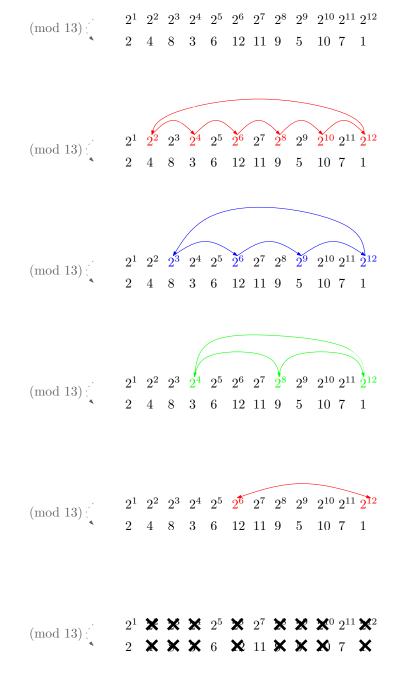
Theorem 25. Any subgroup of a cyclic group is again a cyclic group.

Proof. Let $G = \langle a \rangle$ be a cyclic group and H one of its proper subgroup.

Let $p \in \mathbb{N}$ be the smallest non-zero number such that $a^p \in H$. We show that $H = \langle a^p \rangle$ and so finish the proof.

Surely it holds that $\langle a^p \rangle \subset H$. Let us thus prove that $H \subset \langle a^p \rangle$.

Let *h* be an element of *H* and *q* be such that $h = a^q$. Certainly there exist m, ℓ such that $d = gcd(q, p) = mq + \ell p$. Then $a^d \in H$ and thus $d \ge p$. But on the other hand $d \le p$. Therefore d = p and there exists *k* such that q = kp. It follows that $h = a^q = (a^p)^k \in \langle a^p \rangle$ and we are done.



generators: 2, 6, 7, 11.

Consider again the multiplicative group \mathbb{Z}_{13}^{\times} .

Illustration of validity previous statements

Order of an element

Let G be a group and $g \in G$. The order of g (in G) is the order of the group that is generated by g.

subgroups: $\{1,3,4,9,10,12\}$, $\{1,5,8,12\}$, $\{1,3,9\}$, $\{1,12\}.$

In the finite case, it is equivalent to $\operatorname{order}(g) = \#\langle g \rangle$.

Example 26. Find the order of all elements in \mathbb{Z}_5^{\times} and in \mathbb{Z}_7^{\times} .