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Smooth optimization Optimization methods overview

Examples of optimization in IT

Clustering
Classification
Model fitting
Recommender systems
. . .

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 4 / 40



Smooth optimization Optimization methods overview

Optimization methods

Optimization methods can be:
1 discrete, when the support is made of several disconnected pieces (usually

finite);
2 smooth, when the support is connected (we have a derivative).

They are further distinguished based on how the method calculates a solution:
1 direct, a finite numeber of steps;
2 iterative, the solution is the limit of some approximate results;
3 heuristic, methods quickly producing a solution that may not be optimal.

Methods are also classified based on randomness:
1 deterministic;
2 stochastic, e.g., evolution, genetic algorithsm, . . . .
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Smooth optimization Smooth optimization methods

Gradient descent methods

Goal: find local minima of f : Df → R, with Df ⊂ Rn.

We assume that f , its first and second derivatives exist and are continuous on Df .

We shall describe an iterative deterministic method from the family of descent
methods.
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Smooth optimization Smooth optimization methods

Descent method - general idea

Let x (1) ∈ Df .

We shall construct a sequence x (k), with k = 1, 2, . . ., such that

x (k+1) = x (k) + t(k)∆x (k),

where ∆x (k) is a suitable vector (in the direction of the descent) and t(k) is the
length of the so-called step.

Our goal is to have f
(
x (k+1)) < f

(
x (k)), except when x (k) is already a point of

local minimum.
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Smooth optimization Smooth optimization methods

Descent method - algorithm overview

Let x ∈ Df .
1 Select ∆x ;
2 Select t > 0;
3 Calculate x + t∆x and store it in x ;
4 Repeat this loop until the stopping criterion is satisfied.

For instance, a suitable stopping criterion may be the closeness to 0 of the norm
of the gradient.
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Smooth optimization Smooth optimization methods

Descent method - choice of t

For small t we approximately have:

f (x + t∆x) ≈ f (x) + t∇f (x) ·∆x .

Thus, we need:
∇f (x) ·∆x < 0.

The ideal choice of t is a point of local minimum of the mapping

s 7→ f (x + s∆x)

for some s > 0.

We may use any method to solve this subproblem (e.g., analytic solution, Newton
method, etc). We shall describe the backtracking method.
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Smooth optimization Smooth optimization methods

Backtracking
We have f , ∆x ∈ Rn, x ∈ Df , and parameters α ∈ (0, 1/2), β ∈ (0, 1).
Set t := 1. Replace t by βt until f (x + t∆x) ≤ f (x) + αt∇f (x) ·∆x .

The cut of the graph of f over the line x + t∆x is in black, the tangent line
f (x) + t∇f (x) ·∆x is in blue, and the acceptable limit for descent
f (x) + αt∇f (x) ·∆x is in red.
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Smooth optimization Smooth optimization methods

Choice of ∆x (1/2)
Assume we are at the point x and start to move in the direction v . We have again

f (x + v) ≈ f (x) +∇f (x) · v .

In order to descend, we need ∇f (x) · v < 0. To find the best direction (where the
descent is the greatest), we need to select a norm ‖ · ‖ on Rn, and then solve

∆x = argmin{∇f (x) · v : ‖v‖ = 1} · .

For a symmetric positively definite matrix P ∈ Rn,n we define the following norm:

‖v‖P =
√
vTPv , v ∈ Rn.

The direction of the greatest descent is given by

∆x = −P−1∇f (x)T .
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Smooth optimization Smooth optimization methods

Choice of ∆x (2/2)

The choice ‖ · ‖2 (Euclidean norm) leads to the gradient method. The direction of
the greatest descent of f at a point x is −∇f (x).
That is, we set

∆x (k) = −∇f (x (k))·

Is this the best possible choice? If we have more information on f , we may obtain
better results using Newton’s method:

∆x (k) = −
(
∇2f (x (k))

)(
∇f (x (k)))T .

The direction of the greatest descent is found with respect to the norm ‖ · ‖P with
P = ∇2f (x (k)), i.e., the Hessian matrix of f at the point x (k).
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Smooth optimization Smooth optimization methods

Momentum

We shall add a momentum (sometimes also called acceleration) to the direction
of the descent:

∆x (k) = γx (k−1) + argmin{∇f (x) · v : ‖v‖ = 1},

where γ ∈ [0, 1) is the dampening parameter. For γ = 0 we retrieve the previous
methods.
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Smooth optimization Smooth optimization methods

Curve fitting

Assume that we have some data x1, x2, . . . , xN ∈ Rn and an unknown (possibly
non-deterministic) mapping f : Rn → R for which we have some observations
yi = f (xi ).

We want to find an approximation of f .

We shall find a curve that best fits the data, i.e., minimize the following

N∑
i=1

(yi − β0 − β1xi,1 − β2xi,2 − · · · − βnxin )2 ,

with xi = (xi,1, xi,2, . . . , xi,n)T .
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Smooth optimization Smooth optimization methods

Polynomial regression

The task

minimize
N∑

i=1
(yi − β0 − β1xi,1 − β2xi,2 − · · · − βnxi,n)2

is interpreted as finding the best curve that models our data using

yi = β0 + xT
i β + εi ,

which is the approximation of the mapping f if the error term εi is small.

Why polynomial regression?

The data may be in the following form:

xi = (zi , z2i , z3i , . . . , zn
i )T for some zi ∈ R.
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Smooth optimization Smooth optimization methods

Ordinary least squares (1/2)
If N > n, the minimization problem can always be solved analytically:

β0
β1
...
βn

 = (XTX)−1XT


y1
y2
...
yN


where

X =


1 x1,1 x1,2 · · · x1,n
1 x2,1 x2,2 · · · x2,n
...

...
...

. . .
...

1 xN,1 xN,2 · · · xN,n

 .

The matrix X is given by√√√√ N∑
i=1

(yi − β0 − β1xi,1 − β2xi−2 − · · · − βnxi,n)2 =

∥∥∥∥∥∥∥∥∥


y1
y2
...
yN

− X


β0
β1
...
βn


∥∥∥∥∥∥∥∥∥
2.
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Smooth optimization Smooth optimization methods

Ordinary least squares (2/2)

The solution 
β0
β1
...
βn

 = (XTX)−1XT


y1
y2
...
yN


is called ordinary least square estimate (OLS).
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Numerical Differentiation Introduction and motivation

Motivation

Differentiation is a basic mathematical operation. It is important to have good
methods to compute and manipulate derivatives. Classical methods (real calculus
or complex calculus) are of limited value on computers, since most common
programming environments do not have support for symbolic computations.

Another complication is the fact that in many practical
applications a function is only known at a few isolated
points. For example, we may measure the position of a
car every minute via a GPS (Global Positioning
System) unit, and we want to compute its speed.
When the position is known at all times (as a
mathematical function) we can find the speed by
differentiation.

But when the position is only known at isolated times, this is not possible.

The solution is to use approximate methods (i.e., numerical methods) of
differentiation.

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 19 / 40



Numerical Differentiation Introduction and motivation

Motivation

Differentiation is a basic mathematical operation. It is important to have good
methods to compute and manipulate derivatives. Classical methods (real calculus
or complex calculus) are of limited value on computers, since most common
programming environments do not have support for symbolic computations.

Another complication is the fact that in many practical
applications a function is only known at a few isolated
points. For example, we may measure the position of a
car every minute via a GPS (Global Positioning
System) unit, and we want to compute its speed.
When the position is known at all times (as a
mathematical function) we can find the speed by
differentiation.

But when the position is only known at isolated times, this is not possible.

The solution is to use approximate methods (i.e., numerical methods) of
differentiation.

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 19 / 40



Numerical Differentiation Introduction and motivation

Main idea

The basic strategy for deriving numerical differentiation methods is to evaluate a
function at a few points, find the polynomial that interpolates the function at
these points, and use the derivative of this polynomial as an approximation to the
derivative of the function.

This technique also allows us to keep track of the truncation error, the
mathematical error committed by differentiating the polynomial instead of the
function itself.

In addition to the truncation error, there are also round-off errors, unavoidable
when using floating-point numbers to perform calculations with real numbers.

Numerical differentiation is very sensitive to round-off errors, but these errors are
quite easy to analyse.
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Numerical Differentiation Introduction and motivation

The problem

Let f be a given function that is known at a number of isolated points.

The problem of numerical differentiation consists in computing an
approximation to the derivative f ′ of f by suitable combinations of the known
function values of f .
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Numerical Differentiation Newton’s difference quotient

The basic idea (1/2)

The standard definition of f ′(a) is by a limit process,

f ′(a) = lim
h→0

f (a + h)− f (a)
h .

In the following we will assume that this limit exists, in other words that f is
differentiable at x = a.

An immediate and natural approximation of f ′(a) is then

f ′(a) ≈ f (a + h)− f (a)
h ,

where h is a (small) positive number.
This approximation is called the Newton’s (difference) quotient.
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Numerical Differentiation Newton’s difference quotient

The basic idea (2/2)
The straight line p1 that interpolates f at a and a + h is given by

p1(x) = f (a) + f (a + h)− f (a)
h (x − a).

The derivative p1(x) is exactly the Newton’s quotient of f at a.
Equivalently, the slope of p1 at a is an approximation to the slope of f at a.
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Numerical Differentiation Newton’s difference quotient

Left-sided version

An alternative approximation is given by the left-sided version:

f ′(a) ≈ f (a)− f (a − h)
h .

This approximation behaves similarly, and the analysis is also completely
analogous to that of the more common right-sided version.
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Numerical Differentiation Newton’s difference quotient

Example

Let us consider f (x) = sin x at a = 0.5 (using binary64 floating-point numbers).

We know that the exact derivative is f ′(x) = cos x , so f ′(a) ≈ 0.8775825619 with
10 correct digits.

h f (a + h)− f (a)
h f ′(a)− f (a + h)− f (a)

h

10−1 0.8521693479 2.5 · 10−2
10−2 0.8751708279 2.4 · 10−3
10−3 0.8773427029 2.4 · 10−4
10−4 0.8775585892 2.4 · 10−5
10−5 0.8775801647 2.4 · 10−6
10−6 0.8775823222 2.4 · 10−7

The approximation improves with decreasing h, as expected.
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Numerical Differentiation Newton’s difference quotient

Truncation error

To analyse errors in numerical differentiation, we use Taylor polynomials with
remainders.

f (a + h) = f (a) + h f ′(a)h
2

2 f ′′(ξh),

where ξh ∈ (a, a + h).

Thus
f ′(a)− f (a + h)− f (a)

h = −h
2 f
′′(ξh).

This is called the truncation error of the approximation.
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Numerical Differentiation Newton’s difference quotient

Example

Let us consider again f (x) = sin x at a = 0.5. We have f ′′(x) = − sin x , so that
the truncation error is

f ′(a)− f (a + h)− f (a)
h = h

2 sin ξh with ξh ∈ (0.5, 0.5 + h).

For h = 0.1 the error lies in the interval

[0.05 sin 0.5, 0.05 sin 0.6] = [2.397 · 10−2, 2.823 · 10−2].

As h became even smaller, the number ξh will approach 0.5 and sin ξh will
approach sin 0.5 ≈ 0.479426. So, for h = 10−n, the error tends to

10−n

2 sin 0.5 ≈ 0.2397 · 10−n.
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Numerical Differentiation Newton’s difference quotient

Approximation of the truncation error

In general, if f ′′(x) is continuous, then ξh will approach a when h goes to zero.
Thus we can approximate f ′′(ξh) ≈ f ′′(a).

Theorem
The truncation error when using Newton’s quotient to approximate f ′(a) is given
approximately by ∣∣∣∣f ′(a)− f (a + h)− f (a)

h

∣∣∣∣ ≈ h
2 |f

′′(a)| .
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Numerical Differentiation Newton’s difference quotient

Upper bound on the truncation error

The exact value of the truncation error is given by∣∣∣∣f ′(a)− f (a + h)− f (a)
h

∣∣∣∣ = h
2 |f

′′(ξh)| with ξh ∈ (a, a + h).

Theorem
Suppose f has continuous derivatives up to order two near a.
The truncation error is bounded by∣∣∣∣f ′(a)− f (a + h)− f (a)

h

∣∣∣∣ ≤ h
2 max

x∈[a,a+h]
|f ′′(x)| .

Note that we included the extremal values of the interval [a, a + h].
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Numerical Differentiation Newton’s difference quotient

Round-off error - an example
When computing the approximation with small values of h we have to perform the
critical operation f (a + h)− f (a), i.e., the subtraction of two almost equal
numbers. This may lead to large round-off errors.

Let us consider again f (x) = sin at a = 0.5 and the correct value with ten digits is
f ′(0.5) ≈ 0.8775825619. If we check values of h smaller than 10−6 we find

h f (a + h)− f (a)
h f ′(a)− f (a + h)− f (a)

h

10−7 0.8775825372 2.5 · 10−8
10−8 0.8775825622 −2.9 · 10−10
10−9 0.8775825622 −2.9 · 10−10
10−11 0.8775813409 1.2 · 10−6
10−14 0.8770761895 5.1 · 10−4
10−15 0.8881784197 −1.1 · 10−2
10−16 1.110223025 −2.3 · 10−1
10−17 0.0000000000 8.8 · 10−1
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Numerical Differentiation Newton’s difference quotient

Round-off error in the function values

In a previous lecture we saw that the relative error ε1 in double precision is
bounded by

|ε1| =
∣∣∣∣fl(f (a))− f (a)

f (a)

∣∣∣∣ ≤ 5 · 2−53 ≈ 6 · 10−16.

Note that ε1 depends both on a and f .

Let us denote by ε∗ the maximum relative error that occurs when real numbers
are represented by floating-point numbers, and there is no underflow or overflow.
Thus

fl(f (a)) = f (a)(1 + ε1) and fl(f (a + h)) = f (a + h)(1 + ε2),

where |εi | ≤ ε∗ for i = 1, 2.
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Numerical Differentiation Newton’s difference quotient

Round-off error in the derivative (1/2)

The main source of round-off in subtraction is the replacement of the numbers to
be subtracted by nearest floating-point numbers. We therefore consider the
computed approximation to be

fl(f (a + h))− fl(f (a))
h ,

and ignore the error in the division by h.

Hence

f ′(a)− fl(f (a + h))− fl(f (a))
h = f ′(a)− f (a + h)− f (a)

h − f (a + h)ε2 − f (a)ε1
h

= −h
2 f
′′(ξh) − f (a + h)ε2 − f (a)ε1

h ,

where ξh ∈ (a, a + h).

The truncation error is proportional to h, while the round-off error is proportional
to 1/h.

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 32 / 40



Numerical Differentiation Newton’s difference quotient

Round-off error in the derivative (1/2)

The main source of round-off in subtraction is the replacement of the numbers to
be subtracted by nearest floating-point numbers. We therefore consider the
computed approximation to be

fl(f (a + h))− fl(f (a))
h ,

and ignore the error in the division by h. Hence

f ′(a)− fl(f (a + h))− fl(f (a))
h = f ′(a)− f (a + h)− f (a)

h − f (a + h)ε2 − f (a)ε1
h

= −h
2 f
′′(ξh) − f (a + h)ε2 − f (a)ε1

h ,

where ξh ∈ (a, a + h).

The truncation error is proportional to h, while the round-off error is proportional
to 1/h.

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 32 / 40



Numerical Differentiation Newton’s difference quotient

Round-off error in the derivative (1/2)

The main source of round-off in subtraction is the replacement of the numbers to
be subtracted by nearest floating-point numbers. We therefore consider the
computed approximation to be

fl(f (a + h))− fl(f (a))
h ,

and ignore the error in the division by h. Hence

f ′(a)− fl(f (a + h))− fl(f (a))
h = f ′(a)− f (a + h)− f (a)

h − f (a + h)ε2 − f (a)ε1
h

= −h
2 f
′′(ξh) − f (a + h)ε2 − f (a)ε1

h ,

where ξh ∈ (a, a + h).

The truncation error is proportional to h, while the round-off error is proportional
to 1/h.

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 32 / 40



Numerical Differentiation Newton’s difference quotient

Round-off error in the derivative (2/2)

When h is small, we may assume that f (a + h) ≈ f (a). Thus

f ′(a)− fl(f (a + h))− fl(f (a))
h ≈ −h

2 f
′′(a)− ε2 − ε1

h f (a).

The most uncertain term is ε2 − ε1. The magnitude of relative errors in binary64
is about 10−17. If they are of opposite signs, this magnitude may be doubled, so
we replace ε2 − ε1 by 2ε̃(h).

f ′(a)− fl(f (a + h))− fl(f (a))
h ≈ −h

2 f
′′(a)− 2ε̃(h)

h f (a).

Hence

ε̃(h) ≈ − h
2f (a)

(
f ′(a)− fl(f (a + h))− fl(f (a))

h + h
2 f
′′(a).

)
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Numerical Differentiation Newton’s difference quotient

Round-off error in the derivative - an example (1/2)

Let us consider again f (x) = sin at a = 0.5 and the correct value with ten digits is
f ′(0.5) ≈ 0.8775825619.

h f (a + h)− f (a)
h f ′(a)− f (a + h)− f (a)

h ε̃(h)

10−7 0.85775825372 2.5 · 10−8 −7.6× 10−17
10−8 0.8775825622 −2.9 · 10−10 2.8× 10−17
10−9 0.8775825622 −2.9 · 10−10↓ 5.5× 10−19↓
10−11 0.8775813409 1.2 · 10−6 ↑ −1.3× 10−17↑
10−14 0.8770761895 5.1 · 10−4 5.3× 10−18
10−15 0.8881784197 −1.1 · 10−2 1.1× 10−17
10−16 1.110223025 −2.3 · 10−1 2.4× 10−17
10−17 0.0000000000 −9.2 · 10−1 −9.2× 10−18
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Numerical Differentiation Newton’s difference quotient

Round-off error in the derivative - an example (2/2)
Numerical approximation of the derivative of f (x) = sin x at x = 0.5 using
Newton’s quotient. The plot is a log10− log10 plot.

The point −10 on the horizontal axis corresponds to h = 10−10, and the point −6
on the vertical axis corresponds to an error of 10−6.
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Numerical Differentiation Newton’s difference quotient

Approximation of the round-off error
The round-off error is given by∣∣∣∣f ′(a)− fl(f (a + h))− fl(f (a))

h

∣∣∣∣ ≈ ∣∣∣∣−h
2 f
′′(a)− ε2 − ε1

h f (a)
∣∣∣∣

≤ h
2 |f

′′(a)|+ |ε2 − ε1|h |f (a)|

≤ h
2 |f

′′(a)|+ ε2|+ |ε1|
h |f (a)|

≤ h
2 |f
′′(a)|+ 2max{ε1, ε2}

h |f (a)|

Theorem
The round-off error when using Newton’s quotient to approximate f ′(a) is roughly
bounded by ∣∣∣∣f ′(a)− fl(f (a + h)− fl(f (a))

h

∣∣∣∣ . h
2 |f
′′(a)|+ 2ε(h)

h |f (a)|

where ε(h) = max{ε1, ε2}.
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Numerical Differentiation Newton’s difference quotient

Upper bound on the round-off error

Theorem
Suppose f has continuous derivatives up to order two near a.
The round-off error is (approximatively) bounded by∣∣∣∣f ′(a)− fl(f (a + h))− fl(f (a))

h

∣∣∣∣ ≤ h
2M1 + 2ε∗

h M2.

where M1 = max
a∈[a,a+h]

|f ′′(x)| and M2 = max
x∈[a,a+h]

|f (x)|.
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Numerical Differentiation Newton’s difference quotient

Optimal choice of h
The previous example shows that there is an optimal value of h which minimises
the total error. If, instead of εh we consider ε∗ we have the error estimate

E (a, h) = h
2 |f
′′(a)| + 2ε∗

h |f (a)|.

To find the value of h which minimises this expression, let us consider

E (a, h)′ = |f
′′(a)|
2 − 2ε∗

h2 |f (a)|.

If we solve the equation E (a, h)′ = 0 we obtain the approximate optimal value.

Theorem
Suppose f has continuous derivatives up to order two near a. The value of h which
minimizes the total error (truncation error + round-off error) is approximately

h∗ ≈ 2
√
ε∗|f (a)|√
|f ′′(a)|

.
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Numerical Differentiation Newton’s difference quotient

Other methods (1/2)

Symmetric version of Newton’s quotient
We find an approximation to f ′(a) using the values: f (a − h), f (a) and f (a + h).

f ′(a) ≈ f (a + h)− f (a − h)
2h .

Error:
∣∣∣∣f ′(a)− fl(f (a + h)− fl(f (a − h)))

2h

∣∣∣∣ . h2

6 |f
′′′(a)|+ ε∗|f (a)|

h .
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Numerical Differentiation Newton’s difference quotient

Other methods (2/2)

A four-point differentiation method
We choose as interpolation points a − 2h, a − h, a + h and a + 2h.

f ′(a) ≈ f (a − 2h)− 8f (a − h) + 8f (a + h)− f (a + 2h)
12h .

∣∣∣f ′(a)−
fl(f (a − 2h)− 8fl(f (a − h))) + 8fl(f (a + h)− fl(f (a + 2h))

12h

∣∣∣ . h4

18
|f (v)(a)| +

3ε∗

h
|f (a)|.
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