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Homom: ism

Zg |[1]2]3]4] zZ{]|o|1]2]|3]
1 112134 0 ||0|1]2]3
2 214|113 1 112130
3 311412 2 213|011
4 141321 3 [3(0(1]2
order: 4 order: 4
subgroups: {1}, {1,4}, {1,2,3,4} subgroups: {0}, {0,2}, {0,1,2,3}
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Homomorphism

Zg | 1]2]3]4]
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order: 4

subgroups: {1}, {1,4}, {1,2,3,4}

neutral element: 1

Zg |O0]1[2]3]
0 J0[1]2]3

1 112|130
2 121301
3 I3]0]1}2

order: 4
subgroups: {0}, {0,2}, {0,1,2,3}

neutral element: 0
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Homomorphism

Zg | 1]2]3]4]

1

1

2

3

4

2
3
4

2
3
4

4
1
3

1
4
2

3
2
1

order: 4

subgroups: {1}, {1,4}, {1,2,3,4}

neutral element:

inverse elements:

1

17t =1,
371 =2,

271 =3,
471 = 4,

Zg |O0]1[2]3]
0 J0[1]2]3

1 112|130
2 121301
3 I3]0]1}2

order: 4
subgroups: {0}, {0,2}, {0,1,2,3}
neutral element: 0

07l=0 17'=3,

inverse elements: -, _
27l=2 371=1
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Homomorphism

Zs || 1]2]3]4] Zy |[O0|1]2]3]

1 11213 |4 0 0|1]2]3

2 2141113 1 112|130

3 3111412 2 213|011

4 413|121 3 310112
order: 4 order: 4
subgroups: {1}, {1,4}, {1,2,3,4} subgroups: {0}, {0,2}, {0,1,2,3}
neutral element: 1 neutral element: 0

171=1, 271 =3,
37t=2 47'=14

0°l=0, 171=3,

inverse elements: _
27l=2 371=1

inverse elements:

Aren't these two groups in fact the same group differing only in the “names” of
their elements?
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Homomorphism

Zg ||1]2]3]4] Zg |O]1[2]3]
1 [1]2]3]4 0 J0[12]3
2 2413 1 [1]2[3]0
3 [3]1]4]2 2 2301
2 [a]3]2]1 3 [3][0]1]2

Let us try to rename the elements of the group Zg so to get Zf:

Francesco Dolce (CTU in Prague) MIE-MPI



Homomorphism

Zg ||0[2]3]4] Zg |O]1[2]3]
0 [0[2]3]4 0 J0[12]3
2 2403 1 [1]2[3]0
3 [[3[0]4]2 2 23|01
4 [4[3[2]0 3 [3][0]1]2

Let us try to rename the elements of the group Zg so to get Zf:

@ The neutral element has very special and unique properties: we rename 1 to
0.
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Homomorphism

zg ||of2]3]2] Zg |O]1[2]3]
0 [0[2]3]2 0 J0[12]3
2 [2[2[0]3 1 [1]2[3]0
3 [3][0]2]2 2 23|01
2 [2[3[2]0 3 [3][0]1]2

Let us try to rename the elements of the group Zg so to get Zf:

@ The neutral element has very special and unique properties: we rename 1 to
0.

o If the complete structure should be preserved, then the only two-elements
subgroup {1,4} (in Z2) must correspond to the subgroup {0,2} (in Z;): we
map 4 < 2.
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The same groups and distinct elements (2/5)

zg Jol3[1]2] Zi |o[1]2]3]
0 [0[3[1]2 0 Jo[1]2]3
3 [3[2]0]1 1 [1[2[3]0
1 [1]0]2]3 2 [2[3/0]1
2 [[2[1]3]0 3 [3]0[1]2

Let us try to rename the elements of the group ZJ so to get Z; :

@ The neutral element has very special and unique properties: we rename 1 to
0.

o If the complete structure should be preserved, then the only two-elements
subgroup {1,4} (in Z2) must correspond to the subgroup {0,2} (in Z;): we
map 4 < 2.

@ Now, it remains to rename only 2 and 3; we can check that both remaining
possibilities work; we choose 3 <+ 1 and 2 <> 3.
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The same groups and distinct elements (2/5)

Zi |0[1]2]3] Zi |o[1]2]3]
0 Jo[1]2]3 0 Jo[1]2]3
1 [1[2[3]0 1 [1]2[3]0
2 [2(3/0]1 2 [2[3/0]1
3 [3(0[1]2 3 [3[0[1]2

Let us try to rename the elements of the group Z: so to get Zf:

@ The neutral element has very special and unique properties: we rename 1 to
0.

o If the complete structure should be preserved, then the only two-elements
subgroup {1,4} (in ZZ') must correspond to the subgroup {0,2} (in Z;): we
map 4 < 2.

@ Now, it remains to rename only 2 and 3; we can check that both remaining
possibilities work; we choose 3 <+ 1 and 2 «+> 3.

o It suffices to reorder the rows. ..and we have the Cayley table of Z; .

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 4/24



Homomorphism

@ We have found a way to rename the elements in one table to gain an exact
copy of the other table (after rearranging rows and columns).
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Homomorphism

@ We have found a way to rename the elements in one table to gain an exact
copy of the other table (after rearranging rows and columns).

@ This renaming is actually an injective mapping of the set {1,2, 3,4} onto
the set {0,1,2,3}; let us denote it ¢;:

e1(1) =0, ¢1(2)=3, ¥i1(3)=1, ¢i(4) =2
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Homomorphism

@ We have found a way to rename the elements in one table to gain an exact
copy of the other table (after rearranging rows and columns).

@ This renaming is actually an injective mapping of the set {1,2, 3,4} onto
the set {0,1,2,3}; let us denote it ¢;:

e1(1) =0, ¢1(2)=3, ¥i1(3)=1, ¢i(4) =2

@ We have pointed out that the mapping ¢, works as well:

(1) =0, ¥(2)=1, ¢3)=3, ¢(4)=2.
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Homomorphism

@ We have found a way to rename the elements in one table to gain an exact
copy of the other table (after rearranging rows and columns).

@ This renaming is actually an injective mapping of the set {1,2, 3,4} onto
the set {0,1,2,3}; let us denote it ¢;:

e1(1) =0, ¢1(2)=3, ¥i1(3)=1, ¢i(4) =2

@ We have pointed out that the mapping ¢, works as well:

(1) =0, ¥(2)=1, ¢3)=3, ¢(4)=2.

Would all bijections do the same job? And if not, what makes these two so
special?
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Homomorphism

Let us rename the elements of the group Z; according to the bijection ¢3:

e3(1) =0, ¢3(2)=3, ¥3(3)=2, w3(4)=1.

Zg ||1[2]3]4] Zg |O0]1[2]3]
1 [1]2]3]¢4 0 [0[12]3
2 [2[4[1]3 1 [1]2[3]0
3 [3[1]4]2 2 (23|01
2 [4[3[2]1 3 3012
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Homomorphism

Let us rename the elements of the group Z; according to the bijection ¢3:

e3(1) =0, ¢3(2)=3, ¥3(3)=2, w3(4)=1

p3(2Zg) [O]3[2]1] Zg |O0]1[2]3]
0 [0[3]2]1 0 [0[12]3
3 [[3[1]0]2 1 [1]2[3]0
2 [[2]0[1]3 2 (23|01
1T [1]2]3]0 3 3012

@ The resulting table is not the Cayley table of the group Z;, because, e.g.,
3+ 3 (mod 4) # 1.
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The same groups and distinct elements (4/5)

Let us rename the elements of the group Z; according to the bijection ¢3:

e3(1) =0, ¢3(2) =3, ¢3(3)=2, @3(4)=1.

va(Zs) || 032 1] Zi |0[1]2]3]
0 [[0][3]2]1 0 [0[1[2]3
3 [[3[1]0]2 1 [1]2[3]0
2 20|13 2 [2[3]0]1
i [1]2[3]0 3 [3](0[1]2

o The resulting table is not the Cayley table of the group Z; , because, e.g.,
3+ 3 (mod 4) # 1.

@ The bijection (3 does not give rise to the same structure of the group Z/;
only ¢1 and ¢, have this property.

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 6/24



Homomorphism

The desired property, which only the bijections @1 and ¢, have, is this:
for all n,m € {1,2,3,4}, we have p(n x, m) = ¢(n) +, p(m),

where x; denotes the operation in the group Z., and -+, the one in the group ZI.
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Homomorphism

The desired property, which only the bijections @1 and ¢, have, is this:
for all n,m € {1,2,3,4}, we have p(n x, m) = ¢(n) +, p(m),

where x, denotes the operation in the group Z., and -+, the one in the group Z; .

In words: If we apply the operation X, to two arbitrary elements of the
group Z5 and then we send the result to Zj by ¢, we obtain the same
result as when we first transform by o the elements to Zf and then apply
the operation +,.

X5

n Xsm

o(n) +1 p(m) = p(n x5 m)
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Homomorphism and isomorphism

Let G = (M,o;) and H = (N, o,) be two groupoids. The mapping ¢ : M — N is
a homomorphism from G to H if

for all x,y € M, we havep(x ocy) = ¢(x) oy ¢(y).

If, moreover, ¢ is injective (resp. surjective, resp. bijective) we say that ¢ is a
monomorphism (resp. epimorphism, resp. isomorphism).
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Homomorphism and isomorphism

Let G =(M,o;) and H= (N, o,) be two groupoids. The mapping ¢ : M — N is
a homomorphism from G to H if

for all x,y € M, we havey(x oc y) = p(x) on ¢(y).

If, moreover, ¢ is injective (resp. surjective, resp. bijective) we say that ¢ is a
monomorphism (resp. epimorphism, resp. isomorphism).

@ A homomorphism preserves the structure given by the binary operation: the
result is the same if we first apply the operation and then the homomorphism
than if we proceed inversely.

@ The only thing needed to define a homomorphism is that the set is closed
under the binary operation; this is why we have defined homomorphism for
the most general structures, i.e., groupoids.
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Isomorphic groups

Definition

If there exists an isomorphism between two groups, these groups are isomorphic.
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Isomorphic groups

Definition

If there exists an isomorphism between two groups, these groups are isomorphic.

The two groups Zy and Z{ are isomorphic. We have even found two distinct
isomorphisms: 1 and ¢».
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Isomorphic groups

Definition

If there exists an isomorphism between two groups, these groups are isomorphic.

The two groups Zy and Z{ are isomorphic. We have even found two distinct
isomorphisms: 1 and ¢».

Isomorphic groups have the same order.
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Fundamental properties of homomorphisms (1/2)

Let ¢ be a homomorphism from a group G = (M, o) to H = (N, o).
The group ¢(G) = (p(M), 0,,) is a subgroup of H.
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Fundamental properties of homomorphisms (1/2)

Let ¢ be a homomorphism from a group G = (M, o) to H = (N, o).
The group ¢(G) = (p(M), 0,,) is a subgroup of H.

Each element in ¢(G) can be written as (x) for some x € M.
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Fundamental properties of homomorphisms (1/2)

Let ¢ be a homomorphism from a group G = (M, o;) to H = (N, 04).
The group ¢(G) = (p(M), 0,,) is a subgroup of H.

Each element in ¢(G) can be written as (x) for some x € M.
e For all x,y,z € M we have that
(0(x) 0 @(¥)) on p(2) = @(x 06 y) o (2) = ¢((x 0c ) 06 2) =
= ¢(x 05 (y 06 2)) = @(x) on @y ¢ 2) = @(x) ou (#(y) ou ¢(2))
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Fundamental properties of homomorphisms (1/2)

Let ¢ be a homomorphism from a group G = (M, o;) to H = (N, 04).
The group p(G) = (p(M), oy) is a subgroup of H.

Each element in ¢(G) can be written as (x) for some x € M.
e For all x,y,z € M we have that
(0(x) 0 @(¥)) on p(2) = @(x 06 y) o (2) = ¢((x 0c ) 06 2) =
= ¢(x 05 (y 06 2)) = @(x) on @y o¢ 2) = p(x) oy (#(y) on ¢(2))

@ Denote by e; the neutral element in G. Then ¢(e;) is the neutral element in
©(G) because, for all x € M, we have ¢(e;) o, p(x) = ¢(es 0¢c x) = @(x).

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 10/24



Fundamental properties of homomorphisms (1/2)

Let ¢ be a homomorphism from a group G = (M, o;) to H = (N, 04).
The group p(G) = (p(M), oy) is a subgroup of H.

Each element in ¢(G) can be written as (x) for some x € M.
e For all x,y,z € M we have that
(0(x) 0 @(¥)) on p(2) = @(x 06 y) o (2) = ¢((x 0c ) 06 2) =
= ¢(x 05 (y 06 2)) = @(x) on @y o¢ 2) = p(x) oy (#(y) on ¢(2))

@ Denote by e; the neutral element in G. Then ¢(e;) is the neutral element in
©(G) because, for all x € M, we have ¢(e;) o, p(x) = ¢(es 0¢c x) = @(x).

o It can be shown similarly that the inverse of (x) is p(x ). O

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 10/24



Homomorphism

Consequences of the previous theorem and its proof:

@ A homomorphism always maps the neutral element of one group to the
neutral element of the other group.
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Homomorphism

Consequences of the previous theorem and its proof:

@ A homomorphism always maps the neutral element of one group to the
neutral element of the other group.

o Inverse elements are preserved as well: o(x 1) = ¢(x)~L.
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Fundamental properties of homomorphisms (2/2)

Consequences of the previous theorem and its proof:

@ A homomorphism always maps the neutral element of one group to the
neutral element of the other group.

o Inverse elements are preserved as well: o(x 1) = p(x)

0:Zf — Zg
n +— 2n

is a homomorphism and ¢(Z; ) is the subgroup {0,2,4,6}.

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 11/24



Isomorphic groups are in fact identical, they differ only in the names of their
elements (as we have seen in the case of groups Z; and Z.').

If we say that there exists one group with a certain property up to isomorphism, it
means that all groups with this property are isomorphic to each other.

We prove three well-known statements of this kind.
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... up to isomorphism (1/4)

Isomorphic groups are in fact identical, they differ only in the names of their
elements (as we have seen in the case of groups Z; and Z.').

If we say that there exists one group with a certain property up to isomorphism, it
means that all groups with this property are isomorphic to each other.

We prove three well-known statements of this kind.

Any two infinite cyclic groups are isomorphic.
For each n € N, any two cyclic groups of order n are isomorphic.

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 12 /24



... up to isomorphism (1/4)

Isomorphic groups are in fact identical, they differ only in the names of their
elements (as we have seen in the case of groups Z; and Z.').

If we say that there exists one group with a certain property up to isomorphism, it
means that all groups with this property are isomorphic to each other.

We prove three well-known statements of this kind.

Theorem

Any two infinite cyclic groups are isomorphic.
For each n € N, any two cyclic groups of order n are isomorphic.

| \

Proof: hint.

Let G = (a) be a cyclic group with generator a.

We show that an arbitrary infinite cyclic group is isomorphic to the group (Z, +),
and that an arbitrary cyclic group of order n is isomorphic to Z .

The rest follows from the transitivity of the relation “to be isomorphic”. ]

vy
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... up to isomorphism (1/4)

Isomorphic groups are in fact identical, they differ only in the names of their
elements (as we have seen in the case of groups Z; and Z.').

If we say that there exists one group with a certain property up to isomorphism, it
means that all groups with this property are isomorphic to each other.

We prove three well-known statements of this kind.

Theorem

Any two infinite cyclic groups are isomorphic.
For each n € N, any two cyclic groups of order n are isomorphic.

| \

Proof: hint.

Let G = (a) be a cyclic group with generator a.

We show that an arbitrary infinite cyclic group is isomorphic to the group (Z, +),
and that an arbitrary cyclic group of order n is isomorphic to Z .

The rest follows from the transitivity of the relation “to be isomorphic”. ]

vy

(Z,+) and Z; are the only cyclic groups up to isomorphism.
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Homomorphism

The Klein group is the group (Zy x Z,0), where
7o x 7y = {(0,0),(0,1),(1,0),(1,1)}

and o is the component-wise addition modulo 2: e.g., (1,0) o (1,1) = (0,1).

Francesco Dolce (CTU in Prague) MIE-MPI



... up to isomorphism (2/4)

The Klein group is the group (Za x Zy,0), where
Zy x Zp = {(0,0),(0,1),(1,0),(1,1)}
and o is the component-wise addition modulo 2: e.g., (1,0) o (1,1) = (0,1).

The Klein group is not cyclic and thus cannot be isomorphic to Z;!
It is possible to show this (try it, it is easy):

There exists only two groups of order 4 which are not isomorphic. I

Z; and the Klein group are the only two groups of order 4 up to isomorphism.

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 13/24



Homomorphism

The symmetric group S, of the set of all permutations over {1,2,3,..., n} with
the operation of composition.
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Homomorphism

The symmetric group S, of the set of all permutations over {1,2,3,..., n} with
the operation of composition.

o A (n-)permutation is a bijection of the set {1,2,3,...,n} to itself, so S, is
the set of bijections on {1,2,3,..., n}.
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Homomorphism

The symmetric group S, of the set of all permutations over {1,2,3,..., n} with
the operation of composition.

o A (n-)permutation is a bijection of the set {1,2,3,...,n} to itself, so S, is
the set of bijections on {1,2,3,...,n}.

o Each permutation m € S, can be defined by listing its values:

1 2 3 . n
m(1) w«(2) w(3) -+ w(n))’
The first row could by deleted, and so, e.g., (12 4 35) € S5 is the
permutation swapping elements 3 and 4.
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Homomorphism

The symmetric group S, of the set of all permutations over {1,2,3,..., n} with
the operation of composition.

o A (n-)permutation is a bijection of the set {1,2,3,...,n} to itself, so S, is
the set of bijections on {1,2,3,...,n}.

o Each permutation m € S, can be defined by listing its values:

1 2 3 . n
m(1) w«(2) w(3) -+ w(n))’
The first row could by deleted, and so, e.g., (12 4 35) € S5 is the
permutation swapping elements 3 and 4.

e Composition of permutations: (12435)0(21354)=(21453).
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... up to isomorphism (3/4)

The symmetric group S, of the set of all permutations over {1,2,3,..., n} with
the operation of composition.

o A (n-)permutation is a bijection of the set {1,2,3,...,n} to itself, so S, is
the set of bijections on {1,2,3,...,n}.
@ Each permutation © € S, can be defined by listing its values:

The first row could by deleted, and so, e.g., (1 24 35) € Ss is the
permutation swapping elements 3 and 4.
e Composition of permutations: (124 35)0(21354)=(21453).
@ The composition of permutations is associative, the permutation

(123 ---n) is the neutral element, and the inverse element is the inverse
permutation. Hence, S, is a group of order n!.
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... up to isomorphism(4/4)

Subgroups of the symmetric group S, are called groups of permutations.

The permutation (1 2 4 3 5) € S5 swapping the elements 3 and 4 generates a
subgroup of Ss containing two elements: (12 4 35) and (123 45).
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... up to isomorphism(4/4)

Subgroups of the symmetric group S, are called groups of permutations.

The permutation (1 2 4 3 5) € S5 swapping the elements 3 and 4 generates a
subgroup of Ss containing two elements: (12 4 35) and (123 45).

The structure of the subgroups of S, is very (in some sense maximally) rich:

Theorem (Cayley)

Each finite group is isomorphic to some group of permutations.

Proof: hint only for interested.

Let a be an element of a group G of order n with a binary operation o.

Put 7,(x) = ao x. Since in any group we can divide uniquely, 7, is a bijection
and thus a permutation! The desired monomorphism is the mapping defined for
each element a in this way: ¢(a) = 7,. .. O
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Application of group th n cryptography

Motivation
Definition and properties

© Application of group theory in cryptography
Diffie-Hellman Key Exchange
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Discrete logarithm problem

The standard logarithm (in base a) of the number b is the solution of the
equation
a =b inthe group (R,-).

Definition (Discrete logarithm problem in

Let us consider the group 7.*, o one of its generator and (3 one of its element.
To solve the discrete logarithm problem means to find the integer 1 < x < p—1
such that

o = B (mod p)

Francesco Dolce (CTU in Prague) MIE-MPI Fall 2019/2020 17 /24



The discrete logarithm?

No reasonably fast algorithm solving the discrete logarithm problem is known.
But rising to the power in Z: can be done effectively.

The speed of the best known algorithms is roughly proportional to /p, i.e., for p
having its binary representation 1024 bits long, such algorithm makes
approximately 2°12 operations.

Thus we obtain a one-way function that can be used for asymmetric cipher:
e Find 8 = a* (mod p) is easy, knowing x, o and p;
e Find x, knowing 3, a and p is very difficult

In RSA (Rivest-Shamir-Adleman) cryptosystem, the one way function
“multiplying of primes” is used:
@ Multiplication of primes is easy and fast, while prime factorization of the
result is very difficult.
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Application of group theory in cryptography

Alice
Initialization: she finds two large prime numbers p and g,
she computes n=p - q and p(n) = (p — 1)(g — 1),
she chooses e € {1,2,...,¢(n) — 1} so that gcd(e, ¢(n)) =1,
she computes the private key d so that d- e =1 mod ¢(n).
She sends the public key kyu» = (n, €) to Bob.

Bob
Bob wants to send the message x.
He encrypts the message y = x® mod n and sends y to Alice.

Alice
Alice decrypts the message by x = y¢ mod n.
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Application of group theory in cry

Initialization: Alice finds some large prime number p and some generator « of the
group ;.

She publishes p and «. (Finding a large prime and a generator are not easy
tasks!)

Alice Bob

chooses private key a € {2,...,p — 2} chooses private key b € {2,...,p — 2}
computes public key A = a®mod p computes public key B = a’mod p

exchange of public keys A and B

computes kap = B*modp computes kap = A’ mod p
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Application of group theory in cry

Diffie-Hellman Key Exchange is built on the following facts:

@ Rising to the power in Z; is commutative, and so the value of kap is the
same for both Alice and Bob:

kAB = a) «
kag = (@®)>=a®® mod p.

@ Rising to the power is not computationally complex (square & multiply
algorithm).

@ The inverse operation to rising to the power (the discrete logarithm) is
computationally exhausting.
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Discrete logarithm in general

The discrete logarithm problem can be defined in an arbitrary cyclic group.

Definition (problem of discrete logarithm in group G = (M, +))

Let G = (M, ) be a cyclic group of order n, o one of its generators and 3 one of
its an element.

To solve the discrete logarithm problem means to find the integer 1 < x < n s.t.

o™ = .
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Discrete logarithm in general

The discrete logarithm problem can be defined in an arbitrary cyclic group.

Definition (problem of discrete logarithm in group G = (M, +))

Let G = (M, ) be a cyclic group of order n, o one of its generators and 3 one of
its an element.

To solve the discrete logarithm problem means to find the integer 1 < x < n s.t.

o™ = .

If we use additive notation:

Definition (problem of discrete logarithm in group G = (M, +))

Let G = (M, +) be a cyclic group of order n, o one of its generators and [3 one of
its element.

To solve the discrete logarithm problem means to find the integer 1 < k < n s.t.

kxa=/.
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Application of group theory in cry

Consider the group Z; .
It is a cyclic group of prime order p, and each positive a < p — 1 is its generator.
The problem of discrete logarithm in this group has the form of the equation

ka = (mod p).

We can solve it easily: we find the inverse of « in the group Z; (by polynomial
EEA, see the following lectures), and the solution is k = 3a~* (mod p).
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Application of group theory in cryptography Diffie-Hellman Key Exchange

The discrete logarithm is not always complicated

Consider the group Z;r.

It is a cyclic group of prime order p, and each positive a < p — 1 is its generator.
The problem of discrete logarithm in this group has the form of the equation

ka = (mod p).

We can solve it easily: we find the inverse of a in the group Z; (by polynomial
EEA, see the following lectures), and the solution is k = 3a~* (mod p).

Let p=11, « =3 and 8 = 5. We want to find k such that k-3 =5 (mod 11).
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Application of group theory in cryptography Diffie-Hellman Key Exchange

The discrete logarithm is not always complicated

Consider the group Z;r.

It is a cyclic group of prime order p, and each positive a < p — 1 is its generator.
The problem of discrete logarithm in this group has the form of the equation

ka = (mod p).

We can solve it easily: we find the inverse of a in the group Z; (by polynomial
EEA, see the following lectures), and the solution is k = 3a~* (mod p).

Let p=11, « = 3 and 8 = 5. We want to find k such that k-3 =5 (mod 11).
We easily verify that in 7.}, we have 3™* = 4, and thus k =5 -4 (mod 11) = 9.
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The discrete logarithm is not always complicated

Consider the group Z;.

It is a cyclic group of prime order p, and each positive a < p — 1 is its generator.
The problem of discrete logarithm in this group has the form of the equation

ka = (mod p).

We can solve it easily: we find the inverse of a in the group Z; (by polynomial
EEA, see the following lectures), and the solution is k = 3a~* (mod p).

Example

Let p=11, o =3 and 3 = 5. We want to find k such that k -3 =5 (mod 11).
We easily verify that in 7.}, we have 3™* = 4, and thus k =5 -4 (mod 11) = 9.

Question

We know that groups Z; and Z;r_l are isomorphic and in fact the same. Is this a
problem for the Diffie-Hellman algorithm?

v
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Application of group theory in cryptography Diffie-Hellman Key Exchange

Calculation on elliptic curves

On elliptic curves, we use points (x, y) with x and y being the residue classes
modulo some prime number p.

The operation, which is usually denoted by +, is defined as follows:

Definition

For two points P = (x1,y1) and Q = (x2, ), we define P + Q = (x3, y3) as:

x3 = s°—x —x (mod p)
y3 = s(x—x3)—y1 (mod p)
where 12 - il (mod p) ifP # Q
s= X x
3
Xt (mod p) ifP = Q.
2y

The parameter a is taken from the equation of a given elliptic curve

y? =x3 + ax + b (mod p), with a, b € Z,, which must by fulfilled by all points.

The neutral element O is “artificially” defined such that it has the properties of
the neutral element.

4
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