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Elliptic curves

Calculation on elliptic curves
On elliptic curves, we use points (x , y) with x and y being the residue classes
modulo some prime number p.
The operation, which is usually denoted by +, is defined as follows:

Definition
For two points P = (x1, y1) and Q = (x2, y2), we define P +Q = (x3, y3) as:

x3 ≡ s2 − x1 − x2 (mod p)
y3 ≡ s(x1 − x3)− y1 (mod p)

where
s =


y2 − y1
x2 − x1

(mod p) if P 6= Q
3x21 + a
2y1

(mod p) if P = Q.

The parameter a is taken from the equation of a given elliptic curve
y2 ≡ x3 + ax + b (mod p), with a, b ∈ Zp, which must by fulfilled by all points.
The neutral element O is “artificially” defined such that it has the properties of
the neutral element.
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Elliptic curves

Elliptic curves over the field of real numbers (1/3)

To better understand what is happening on elliptic curves, we consider points
(x , y) from the continuous plane R2.

Definition
An elliptic curve is the set of points given by the equation

y2 = x3 + ax + b,

where the real coefficients a, b satisfy 4a3 + 27b2 6= 0.

The group operation can be defined by geometrical means (see Wolfram
Demonstrations Project).
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Elliptic curves

Elliptic curves over the field of real numbers (2/3)
When we add two poinsts P = (x1, y1) and Q = (x2, y2), we plot a line through P
and Q and we look for intersections of this line and the elliptic curve.

If P 6= Q, the line going through P and Q has equation

y = y2 − y1
x2 − x1

(x − x1) + y1 = y2 − y1
x2 − x1

(x − x2) + y2.

If P = Q = (x1, y1), a tangent line to the elliptic curve at P = Q has slope given
by the derivative of the curve

y =
√

x3 + ax + b

at x1, which is
3x2 + a

2
√
x3 + ax + b

= {for x = x1} = 3x21 + a
2y1

,

and thus the equation of the line is

y = 3x21 + a
2y1

(x − x1) + y1 .
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Elliptic curves

Elliptic curves over the field of real numbers (3/3)
Now, we are looking for intersections of some line y = sx + d , where s is the slope
and d ∈ R, and the elliptic curve y2 = x3 + ax + b.
This leads to solving the equation

(sx + d)2 = x3 + ax + b ,

i.e., a polynomial equation of order 3, witch can have 1, 2 or 3 real roots (we
have always at least one solution; namely the points P and Q).

For instance, the situation where we obtain only two roots for distinct P and Q
corresponds to Q = −P and the result of the sum is the neutral element O.
In general, the solution of the equation is obtained in this way: For two points
P = (x1, y1) and Q = (x2, y2) define P +Q = (x3, y3) as:

x3 = s2 − x1 − x2 and y3 = s(x1 − x3)− y1

where
s =


y2 − y1
x2 − x1

if P 6= Q
3x21 + a
2y1
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Elliptic curves

Elliptic curves over a general field

The previous three slides show how to define a group over the set of points in the
plane R× R.
Generally, instead of the set R we could take an arbitrary field, e.g., the field Zp,
where the discrete logarithm problem is difficult to solve.

Field, what is that? Generally speaking, it is a set with two binary operations
(usually called addition and multiplication) which allow us to define analogues of
common arithmetical operations such as subtracting, dividing, rising to the power,
logarithm,. . .
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Rings and fields

Sets with one binary operation

A nonempty set M with a binary operation · (resp. + for the additive notation).

grupoid

semigroup

monoid

group

Abelian group

associativity

neutral element

inverse element

commutativity
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Rings and fields

Sets with two binary operations

For more sophisticated arithmetical operations with numbers we need both
addition and multiplication.
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Rings and fields

Definition of a ring

Definition (Ring)
Let M be a nonempty set, and + and · two binary operations. We say that
R = (M, +, ·) is a ring if the following holds:

(M, +) is an Abelian group,
(M, ·) is a monoid,
both left and right distributive law hold:

(∀ a, b, c ∈ M) we have: a(b + c) = ab + ac ∧ (b + c)a = ba + ca.

We respect the standard convention that the multiplication has a higher priority
than the addition.

Sometimes, (M, ·) is required to be only a semigroup.
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Rings and fields

Terminology

Let R = (M, +, ·) be a ring.
If · is associative, R is an associative ring.
If · is commutative, R is a commutative ring.
(M, +) is called the additive group of the ring R.
(M, ·) is called the multiplicative groupoid/monoid of the ring R.
The neutral element of the group (M, +) is called the zero element and is
denoted by 0; the inverse element to a ∈ M is denoted as −a.
Inside the ring we can define subtraction by

a−b := a + (−b).
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Rings and fields

Examples

(N, +, ·) is not a ring, because (N, +) is not a group.

(Z, +, ·) is a ring.
The trivial ring is ({0}, +, ·) (if it holds that 0 · 0 = 0).
The set (Rn,n, +, ·) of square real matrices with the usual addition and
multiplication is a ring; the zero element is the zero matrix.
The set of all polynomials (with complex / real / integer coefficients) is a
ring; the zero element is the zero polynomial p(x) = 0.
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Rings and fields

Basic properties of rings
In an arbitrary ring (M, +, ·), the following holds.

Left and right distributive law for subtracting, i.e.,

c(b − a) = cb − ca.

Indeed:

ca + c(b − a) = c(a + b − a) = cb =⇒ c(b − a) = cb − ca.

�

Multiplying by the zero element returns the zero element, i.e.,

∀a ∈ M a · 0 = 0 ∧ 0 · a = 0.

Indeed:
a · 0 = a(a − a) = aa − aa = 0.

�
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Rings and fields

Integral domain

Definition (zero divisors)
Let R = (M, +, ·) be a ring. Two arbitrary nonzero elements a, b ∈ M such that

a · b = 0

are called zero divisors.

Definition (integral domain)
A commutative ring without zero divisors is called an integral domain.
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Rings and fields

Examples of integral domains

(Z, +, ·) is an integral domain.

Each number ring (M, +, ·), where M ⊂ C and + and · are classical, is an
integral domain.
The ring (Rn,n, +, ·) is not an integral domain for n ≥ 2, because it is not
commutative; moreover, it has zero divisors:(

1 0
1 0

)(
0 0
1 1

)
=
(

0 0
0 0

)
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Rings and fields

Definition of field

Definition (field)
A ring T = (M, +, ·) is a field if (M \ {0}, ·) is an Abelian group. This group is
called the multiplicative group of the field T .

Why do we have to remove the zero element?
Because the zero has no inverse element (with respect to the multiplication), i.e.,
it is not possible to divide by zero: 0−1 =?!.

We can divide by all other elements of the field!

dividing = multiplying by the inverse element

a
b := a · b−1 for b 6= 0.
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Rings and fields

Examples of fields

The ring of integers (Z, +, ·) is not a field, because (Z \ {0}, ·) misses some
inverse elements.

The ring of rational numbers (Q, +, ·) is a field. Moreover, it is the smallest
number field (with the common arithmetical operations).
The smallest field is the so-called trivial field ({0, 1}, +, ·), with operations
given by the following tables:

+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

The first table corresponds to the bit operation XOR and the latter to AND, or,
alternatively, to the addition and multiplication modulo 2.
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Rings and fields

Some properties

In each field all usual arithmetical operations are defined:
addition, subtraction, multiplication, division, and all operations derived from
them such as rising to the power, root extractions, logaritm, . . .

Using the trivial field we have all these operations over one bit. Later we will show
how to extend them to any number of bits.

Theorem
Each field is an integral domain.

Proof.
Since the multiplicative group of the field (M \ {0}, ·) is closed under
multiplication, for all nonzero a, b it holds that their product a · b ∈ M \ {0} is
again nonzero.
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Rings and fields

Homomorphism and isomorphism

Definition
A mapping h from the ring (resp. field) R1 to the ring (resp. field) R2 is a
homomorphism if h is a homomorphism of the corresponding additive and
multiplicative groupoids (resp. groups).
If, moreover, h is bijective (injective and surjective), it is an isomorphism.
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Finite fields

Finite fields

A field with finite number of elements is called finite. The number of elements is
said to be the order of the field.

An example of finite field is the set (of residue classes modulo p)

Zp = {0, 1, . . . , p − 1}

with operations modulo a prime p (see the previous lecture).

E.g., for p = 5 we obtain the field with following operations:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

and

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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Finite fields

Additive group (Zp, +)

The order of the additive group (Zp, +) is the prime number p.
Each nonzero element is a generator (this holds for all groups with prime
order).
(Zp, +) is a group even when p is not prime.
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Finite fields

Multiplicative group (Zp \ {0}, ·)

The order of the group Z×
p is p − 1 and this is never a prime number for

p 6= 3!
Z×

p is cyclic (i.e., there exists a generator of it).
The number of generators depends on p − 1, and is equal to the number of
numbers coprime to p − 1, i.e., ϕ(p − 1).
If k with k < p divides p − 1, then there exists a subgroup in Z×

p of order k
and it contains just the elements for which ak = 1.
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Finite fields

Orders of fields?

We have shown a construction of a finite field of order p with p prime.
Are there fields of any arbitrary order?

Theorem
Any finite field has order pn, where p is a prime number and n is a positive
natural number.
The prime number p is called the characteristic of the field.
Furthermore, all fields of order pn are isomorphic.
Additionally, the multiplicative group of a finite field is cyclic.

Consequence: There are no fields of order 6, 10, 12, 14, . . .

If we chose p = 2 and n = 8, we obtain the field providing us with arithmetic on 1
byte (8 bits)!
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Additionally, the multiplicative group of a finite field is cyclic.

Consequence: There are no fields of order 6, 10, 12, 14, . . .

If we chose p = 2 and n = 8, we obtain the field providing us with arithmetic on 1
byte (8 bits)!
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Binary fields

Symmetric cryptography (more the course MIE-BHW)

Secure exchange of longer text performed by asymmetric ciphers (RSA,
Diffie-Hellman and others) is not effective.

That is why the symmetric ciphers are used: symmetric ciphers assume that
(and take advantage of) Alice and Bob share some secret key.
Asymmetric ciphers are used only for exchanging this private key.

A very common method is the block cipher called Advanced Encryption Standard
(AES).
Here we get acquainted with the mathematics underlying this method.
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Binary fields

AES block cipher

The text we want to securely transfer is divided into (e.g.) blocks having 8 bits.
Then, these blocks are encoded using the shared key so that the decoding can be
easily made using the same key.

This cipher AES is based on the fact that arithmetic operations with n = 8 bits
can be understood as operations in a finite field with 2n elements for n = 8.
The fields with 2n elements are called binary fields and are denoted GF (2n) (as
Galois Fields).

We now explain how to define addition and multiplication in these fields.
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Binary fields

The wrong way

Consider a field GF (28). Each element can be represented as an 8 bit string, e.g.,
11010110, 01100011, etc.

Addition: Addition can be defined component-wise modulo 2. i.e.

11010110 + 01100011 = (1 + 0 mod 2)(1 + 1 mod 2) · · ·
· · · (0 + 1 mod 2) = 10110101.

The neutral (zero) element is 00000000, and each element is inverse to itself. We
have an additive group.

Multiplication: Multiplication cannot be defined component-wise: The neutral
element would be 11111111 and the inverse to (e.g.) 11111110 would not exist.

Multiplication must be defined in a different way!
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Binary fields

Rings of polynomials over a ring / field

In order to be able to add, subtract, and multiply a polynomial of the form∑
aix i , we only need to know how to add, subtract, and multiply the

coefficients. In general, we can construct a ring of polynomials over an arbitrary
ring or field similar to the one we know from real or complex numbers.

Definition
Let K be a ring. The set of polynomials with coefficients in K together with
operations of addition and multiplication defined as

n∑
i=0

aix i +
n∑

i=0
bix i =

n∑
i=0

(ai + bi)x i ;

( n∑
i=0

aix i

)
·

( m∑
i=0

bix i

)
=

n+m∑
i=0

∑
j+k=i

ajbk

 x i

is the commutative ring of polynomials over the ring K. This ring is denoted
as K [x ].
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Binary fields

Irreducible polynomial

Definition
Let K be a field and P(x) ∈ K [x ] be of degree at least 1. We say that P(x) is
irreducible over K if, for any two polynomials A(x) and B(x) from K [x ], it holds
that

A(x) · B(x) = P(x) ⇒
(
degree of A(x) = 0 ∨ degree of B(x) = 0

)
.

Irreducible polynomials are primes among polynomials!
Their definition is analogous as well as their properties.

Example: Whereas x2 + 1 is irreducible over the field Q, the polynpmial
x2 − 1 = (x + 1)(x − 1) is not.

Remark: x2 + 1 is irreducible over the field Q, but not over the field Z2, where
the coefficients are added and multiplied modulo 2:

x2 + 1 = (x + 1)(x + 1) = x2 + 2x + 1.
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Binary fields

Irreducible polynomial as a modulus

We define modulo polynomial as:

A(x) (mod P(x)) = the remainder of the division of A(x) by P(x).

The result is always a polynomial of degree less than the degree of P(x).

Example: for A(x) = x3 and P(x) = x2 + 1 we have A(x) = x(x2 + 1) + (−x)
and thus

x3 ≡ −x (mod x2 + 1).

If P(x) is irreducible (with respect to the field from which the coefficients are
taken), the remainders after division by P(x) form a group (if we again remove
the zero polynomial).
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Binary fields

Field GF (24)

The elements GF (24) are represented as polynomials of order at most 3 with
coefficients hi from the field Z2:

h3x3 + h2x2 + h1x + h0 ≈ (h3h2h1h0)2.

Addition component-wise modulo 2:

(x3 + x + 1) + (x2 + x + 1) = x3 + x2.
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Binary fields

Field GF (24) – multiplication

Multiplication modulo a chosen irreducible polynomial, e.g., x4 + x + 1.
Example: multiplication A(x) · B(x) for A(x) = x3 + x2 + 1 and B(x) = x2 + x .

1 Multiply A(x) · B(x) classically and rewrite coefficients mod 2:

A(x) · B(x) = x5 + 2x4 + x3 + x2 + x = x5 + x3 + x2 + x .

2 Find the remainder after division by P(x). Since

x5 = x(x4 + x + 1) + (x2 + x), it holds x5 ≡ x2 + x (mod x4 + x + 1),

and we have

x5 + x3 + x2 + x ≡ (x2 + x) + (x3 + x2 + x) ≡ x3 (mod x4 + x + 1).

Hence we get that 1101 · 0110 = 1000.
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Binary fields

AES in field GF (28)

According to the specification of AES, the multiplication is done modulo

x8 + x4 + x3 + x + 1.
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Construction of a general finite field

Construction of a finite field

In general, we construct a finite field GF (pk) using polynomials as follows.

Let m(x) ∈ Zp[x ] be an irreducible polynomial of degree k.

GF (pk) =
(
{q(x) ∈ Zp[x ] : deg(q) < k} , +, × mod m(x)

)
.
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