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Let us start by fixing some notation and giving some basic example.

1 Numerical sets
We denote by N the set of natural numbers, that is

N = {0, 1, 2, 3, . . .},

and with Z the set of integers

Z = {0, 1,−1, 2,−2, 3,−3, . . .}.

Two important subsets of Z are the sets Z+ of positive integers and Z− of
negative integers:

Z+ = {1, 2, 3, . . .}, and Z− = {−1,−2,−3, . . .}.

We can also use the notations Z+
0 and Z−0 to denote respectively the sets of

non-negative integers and the one of non-positive integers, that is:

Z+
0 = {0, 1, 2, 3, . . .} and Z−0 = {0,−1,−2,−3, . . .}.

1



Note that Z+
0 = Z+ ∪ {0} = N.

Other important numerical sets are the set of rational numbers Q defined us

Q =
{m
n
| m,n ∈ Z, n 6= 0

}
=

{
0,

1

2
,−3

5
, . . .

}
and the one of real numbers R (a formal definition is beyond the scope of this
course)

R =

{
0, 1,−5,

7

4
,
√

2, π, e, . . .

}
.

The last numerical set we will consider is the set of complex numbers C
defined us

C = {a+ ib | a, b ∈ R},

where i is called the imaginary unit and satisfies i2 = −1.
We have the following chain of inclusions:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

2 Algebraic structures with one operation
A binary operation on a set M is a map f from the cartesian product M ×M
to M , that is

f : M × S →M
(x, y) 7→ f(x, y).

Example 1 The sum on N is the binary operation defined as

+ : N× N→ N
(a, b) 7→ +(a, b)

.

Instead of +(a, b), we usually denote the image of the sum by a+b. For istance,
instead of +(2, 3) = 5 we will write 2 + 3 = 5.

Some sets, when equipped with a binary operation (or more than one), have
particular properties. According to which properties are satisfied, we use differ-
ent names. In this section we consider the main algebraic structures equipped
with just one binary operation.

2.1 Groupoids
Let us consider a set M and a binary operation ◦ : M ×M →M .

The pair (M, ◦) is called a groupoid whenever the set M is closed under the
operation ◦. That is, we have

∀ a, b ∈M a ◦ b ∈M.
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Example 2 The pair (N,+) is a groupoid, since for every two natural numbers
a, b one has a+ b ∈ N.

On the other hand, if we consider the set M = {0, 1, 2, . . . , 9}, we have that
M is not closed under the sum, since, for instance, 2 + 9 /∈M .

Exercise 3 Find an infinite subset S ⊂ N such that (S,+) is not a groupoid.

2.2 Semigroups
A groupoid (M, ◦) is called a semigroup if the operation ◦ is associative, that is
if

∀ a, b, c ∈M (a ◦ b) ◦ c = a ◦ (b ◦ c).

Example 4 The set N with the usual multiplication is a semigroup, since for
every a, b, c ∈ N one has (a · b) · c = a · (b · c). The same is not true if we consider
the exponentiation as binary operation. Indeed

(23)
2

= 64 6= 512 = 2(3
2).

2.3 Monoids
A semigroup (M, ◦) is called a monoid whenever there exists a neutral element,
that is an element e ∈M such that

∀ a ∈M a ◦ e = e ◦ a = e.

Note that in the definition we want e to be a neutral element both on the left
and on the right. In some tricky case we could have a left neutral element but
no right neutral element, or viceversa, or we could have both but distinct.

Example 5 The set N provided with the sum is a monoid. A neutral element
is the element 0 ∈ N.

Proposition 6 The neutral element of a monoid is unique.

Proof. Let (M, ◦) be a monoid and e some neutral element (from the definition
we know that at least one exists!). We prove by contradiction that e is the
only neutral element. By contradiction, assume that in the monoid there exists
another neutral element e′ different from e. It holds that

e′ = e′ ◦ e = e,

using the property of the neutral element from the definition. We get a contra-
diction with the statement that e′ 6= e.
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2.4 Groups
Let us consider a monoid (M, ◦) with neutral element e. We say that an element
a ∈ M is invertible, whenever there exists another element b ∈ M such that
a ◦ b = e = b ◦ a. Such an element is called an inverse of a and it is usually
denoted −a (whenever we use the additive notation) or a−1 (whenever we use
the multiplicative notation). Note that, again, we consider an inverse as both a
left inverse and a right inverse.

A monoid (M, ◦), with neutral element e, is called a group if every element
is invertible, that is if

∀ a ∈M ∃ a−1 ∈M such that a ◦ a−1 = e and a−1 ◦ a = e.

Exercise 7 The monoid (Z,+) is a group, since the inverse of any element
a ∈ Z is −a. On the other hand (N,+) is not a group since, for istance, the
element 2 ∈ N has no inverse.

Example 8 Find an infinite subset S ⊂ Z such that (S,+) is a monoid but not
a group.

Proposition 9 Each element of a group has exactly one inverse.

Proof. Let (M, ◦) be a group, a an arbitrary element of the group and a−1 one
of its inverse elements (from the definition we know that there exists at least
one!) Let us suppose, by contradiction, that there exists another element ā,
different from a−1 such that ā ◦ a = e = a ◦ ā, where e is the neutral element of
the group. Hence, it holds that

ā = ā ◦ e = ā ◦ (a ◦ a−1) = (ā ◦ a) ◦ a−1 = e ◦ a−1 = a−1,

contradicting the fact that ā 6= a−1.

A group (M, ◦) is called Abelian, or commutative, if its elements commute,
that is if

∀ a, b ∈M a ◦ b = b ◦ a.

Example 10 Both the additive group (Q,+) and the multiplicative group (Q, ·)
are Abelian. The first has neutral element 0, while the second has neutral
element 1.

A very important example of non Abelian group will be given later in this
course.

3 Algebraic structures with two operations
Let us now consider triplets (M,+·), withM a nonempty set and +, · two binary
operations on M .
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3.1 Rings
We say that a triplet R = (M,+, ·) is a ring if the following hold:

• (M,+) is an Abelian group;

• (M, ·) is a monoid;

• both left and right distributive laws hold, i.e. ∀ a, b, c ∈M we have

– a · (b+ c) = a · b+ a · c and
– (b+ c) · a = b · a+ c · a.

We respect the standard convention that multiplication has a higher priority
than addition, so we can write a · b+ a · c instead of (a · b) + (a · c).

Moreover, when it is clear from the context we replace · by the simple
juxstaposition, that is we write ab instead of a · b.

Example 11 Both the triplets (Z,+, ·) and (Q,+, ·) are rings. On the other
hand the triplet (N,+, ·) is not a ring since (N,+) is not a group.

Example 12 The triplet ({0},+, ·), with 0 + 0 = 0 and 0 ·0 = 0 is a ring called
the trivial ring.

We say that a ring R = (M,+, ·) is a commutative ring whenever · is com-
mutative. The group (M,+) is called the additive group of R, while the monoid
(M, ·) is the multiplicative monoid of R.

The neutral element of the additive group is called the zero element of the
ring, and it is denoted by 0, and the inverse element of a ∈ M is denoted by
−a. We can also define the subtraction of two elements a, b ∈M by

a− b := a+ (−b).

Proposition 13 Let (M,+, ·) be a ring. Left and right distributive laws hold
for the subtraction, that is:

∀ a, b, c ∈M a(b− c) = ab− ac and (a− b)c = ac− bc.

Proof. Let us prove the left distributive law, the right one being proved sym-
metrically. Since the distributive law hold for the sum, we have

ac+ a(b− c) = a(c+ b− c) = ab.

Thus, by subtracting ac to both members, we have

a(b− c) = ab− ac.

Example 14 The set of polynomials with real coefficients R[x] is a ring. The
zero element is the zero polynomial p(x) = 0. We will talk more of this example
later in the course.
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3.2 Integral domains
Let (M,+, ·) be a ring. Two non-zero elements a, b ∈M are called zero divisors
if a · b = 0.

A commutative ring without zero divisors is called an integral domain.

Example 15 The ring (Z,+, ·) is an integral domain. On the other hand the
ring (Z6,+6, ·6), where the sum and the product are defined modulo 6, is not
an integral domain, since 2, 3 6= 0 but 2 ·6 3 = 0.

3.3 Fields
A ring (M,+, ·) is a field if (M \{0}, ·) is an Abelian group. This group is called
the multiplicative group of the field.

Example 16 The ring of integers (Z,+, ·) is not a field, since (Z\{0}, ·) misses
some inverse elements.

On the other hand, (Q,+, ·) is a field. Moreover, this is the smallest number
field with the common arithmetical operations.

Example 17 The smallest field is the so-called trivial field ({0, 1},+, ·), with
operations

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0,

and
0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1.

Proposition 18 Each field is an integral domain.

Proof. Since the multiplicative group (M \{0}, ·) is closed under multiplication,
for all non-zero elements a, b ∈M it holds that their product a · b ∈M \ {0} is
again non-zero.
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