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As in the previous lecture, let us consider matrices over R.

1 Elementary operations and determinants
Because of its recursive definition, it is often hard to compute the determinant.
Using elementary operations we can create more zeros in a matrix, but these
operations will change the determinant. Let us see how.

Theorem 1 Let A ∈Mn,n (R) be square matrix.

(1) If B is obtained from A by interchanging two different rows (elementary row
operation of type i)) or two different columns (elementary column operation
of type i)), then

det (B) = −det (A) .

(2) If B is obtained from A by multiplying a row (elementary row operation of
type ii)) or a column (elementary column operation of type ii)) by a number
k, then

det (B) = k · det (A) .
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(3) If B is obtained from A by adding a multiple of some row of A to a different
row (elementary row operation of type iii)) or a multiple of some column of
A to a different column (elementary column operation of type iii)), then

det (B) = det (A) .

The proof of the previous theorem is not hard, but its out of the scope of
this course.

Example 2 Let us consider the matrix

A =

1 2 −1
2 3 3
4 7 0

 .

Because of point (3) of Theorem 1, we know that the determinant does not
change if we subtract twice the 1-row from the 3-row and the 2-row from the
3-row, so

det (A) = det

1 2 −1
2 3 3
2 3 2

 = det

1 2 −1
2 3 3
0 0 −1

.

Thus, using Laplace expansion along the third row we have

det (A) = −1 · (−1)3+3 det

(
1 2
2 3

)
= −(1 · 3− 2 · 2) = 1.

Example 3 Following the previous result we can compute the determinant of
the following matrices:

A =

1 2 −1
2 3 3
4 7 1

 and B =


1 a a a
a 1 a a
a a 1 a
a a a 1


(Exercise).

2 Some properties on determinants
The following result easily follows from point (2) of Theorem 1.

Theorem 4 Let A ∈Mn,n (R). Then for any number k ∈ R

det (kA) = kndet (A) .

Example 5 Let us consider the matrix

A =

(
2 4
6 2

)
= 2

(
1 2
3 1

)
.

Then
det (A) = 4− 24 = −20 = 22 · (1− 6).
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The determinant of diagonal and triangular matrices is quite easy to com-
pute.

Theorem 6 If a square matrix is triangular, then its determinant is the product
of the entries of the main diagonal.

Proof.[Idea] Let us consider an upper triangular matrix A ∈ Mn,n (R), that is
a matrix of the form

A =


a1,1 0 · · · 0 0
∗ a2,2 · · · 0 0
...

...
. . .

...
...

∗ ∗ · · · an−1,n−1 0
∗ ∗ · · · ∗ an,n


where the ∗ represent arbitrary real numbers. Then, by considering recursively
the Laplace expansion along the first row, we find that

det (A) = a1,1a1,2 · · · an,n.

Example 7 Let us consider the matrix

A =


1 2 −1 5
0 −1 7 4
0 0 2 2
0 0 0 −3

 .

The matrix is (lower) triangular. Then, by Theorem 6 we have

det (A) = 1 · (−1) · 2 · (−3) = 6.

Column operations from a matrix A to a matrix B can be accomplished by
doing the corresponding row operations from AT to BT , then take the transpose
to BT back to B. The following theorem tell us that transposing a matrix does
not change its determinatn.

Theorem 8 Let A ∈Mn,n (R). Then

det
(
AT
)
= det (A) .

Example 9 Let us consider a matrix

A =

(
1 2
3 4

)
and its transpose

AT =

(
1 3
2 4

)
.

Then
det
(
AT
)
= 1 · 4− 3 · 2 = −2 = 1 · 4− 2 · 3 = det (A) .
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Theorem 10 Let E be an elementary matrix.

1. If E is of type i) then det (E) = −1.

2. If E is of type ii) and is obtained from I by multiplying a row (or a column)
by a number k, then det (E) = k.

3. If E is of type iii), then det (E) = 1.

Proof. In this proof we will consider elementary matrices obtained from In,
with n ∈ N, using a row elementary operation. The case of matrices obtained
by elementary column operations can be proved in a symmetric way.

1. Let us first consider the case of an elementary matrix of type i). Let i, j
with 1 ≤ i < j ≤ n (the case j < i is proved symmetrically) be such that

I
i)−−−−−−→

R1 ↔ Rj

E. Let us prove our result by induction on n. If n = 2, then

necessarly we

E =

(
0 1
1 0

)
and det (E) = −1.
If n > 2 then, we have

E =

1 i j n



1 0 · · · 0 · · · 0 · · · 0 1
0 1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
. . .

...
0 0 · · · 0 · · · 1 · · · 0 i
...

...
. . .

...
. . .

...
. . .

...
0 0 · · · 1 · · · 0 · · · 0 j
...

...
. . .

...
. . .

...
. . .

...
0 0 · · · 0 · · · 0 · · · 1 n

Let k 6= i, j. Then the (k, k)-entry of the matrix is 1 while for all h 6= k,
the (k, h)-entry of E is 0 (that is, the k-row has zeros everywhere except
at its k-th position). Using Laplace Expansion Theorem, we can consider
the cofactor expansion of E along the k-row and obtain

det (E) = (−1)k+k · 1 · det (Ak,k) +
∑
h6=k

(−1)k+h · 0 · det (Ak,h)

= det (Ak,k) ,
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where Ak,k is of the form

Ak,k =

1 i′ j′ n− 1



1 0 · · · 0 · · · 0 · · · 0 1
0 1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
. . .

...
0 0 · · · 0 · · · 1 · · · 0 i′

...
...

. . .
...

. . .
...

. . .
...

0 0 · · · 1 · · · 0 · · · 0 j′

...
...

. . .
...

. . .
...

. . .
...

0 0 · · · 0 · · · 0 · · · 1 n− 1

for certains 1 ≤ i′ < j′ ≤ n − 1 (resp. j′ < i′). Note that Ak,k is an
elmentary matrix of size (n− 1)× (n− 1) and that it can be obtain from
In−1 by the elementary row-operation

In−1
i)−−−−−−→

Ri′ ↔ Rj′
Ak,k.

By inductive hypothesis det (Ak,k) = 1. Thus det (E) = 1 as well.

2. Let us now consider the case of an elementary matrix of type ii). Let i

and k, with 1 ≤ i ≤ n and k 6= 0 be such that I
ii)−−−−−−→

Ri → kRi

E. Then, we

can prove that det (E) = k (Exercise).

3. Let us finally consider the case of an elementary matrix of type iii). Let
i, j and k with 1 ≤ i < j ≤ n (resp. j < i) and k ∈ R be such that

I
ii)−−−−−−−−−−→

Rj → Rj + kRi

E. Then, we can prove that det (E) = 1 (Exercise).

Example 11 Let us consider the three elementary matrices

E1 =

0 0 1
0 1 0
1 0 0

 , E2 =

1 0 0
0 1 0
0 0 1

3

 , E3 =

 1 0 0
0 1 0
−2 0 1

 .

. We have

det (E1) = −1, det (E2) =
1

3
and det (E3) = 1.

The following important result tell us how to compute the determinant of
the product of two matrices.

Theorem 12 (Product Theorem) Let A,B ∈Mn,n (R). Then

det (AB) = det (A) det (B) .
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Proof. Let us first consider an elementary matrix E ∈ Mn,n (R). We know,
from Lecture 8 that the matrix B = EA represents the matrix A after we apply
an elementary row operation and that the matrix C = AE represents the matrix
A after we apply an elementary column operation. Combining Theorem 10 with
Theorem 9 of the previous lecture, we have that:

• If E is of type i), then det (E) = −1. Moreover, B is obtained from A by
interchanging two different rows and the matrix C is obtained from A by
interchanging two columns. Thus

det (EA) = det (B) = −det (A) = det (E) det (A)

and
det (AE) = det (C) = −det (A) = det (A) det (E) .

• If E is of type ii), then det (E) = k for a certain number k 6= 0. The
matrix B is obtained from A by multiplying all elements of a certain row
by k, while the matrix C is obtained from A by multiplying all elements
of a certain column by k. Thus

det (EA) = det (B) = k · det (A) = det (E) det (A)

and
det (AE) = det (C) = k · det (A) = det (A) det (E)

• If E is of type iii), then det (E) = 1. Moreover B is obtained from A by
adding a multiple of some row of A to a different row, while C is obtained
from A by adding a multiple of some column of A t a differenc column.
Thus

det (EA) = det (B) = det (A) = det (E) det (A)

and
det (AE) = det (C) = det (A) = det (A)det (E) .

By Theorem 2 of Lecture 9, we know that there exists two invertible matrices
U, V ∈Mn,n (R) such that

UAV =

(
Ir O
O O

)
,

with r = rank (A). Moreover, from wat we have seen in Lecture 9, we know
that there exists elementary matrices E1, E2, . . . , Ep, Ẽ1, Ẽ2, . . . , Ẽq such that

U = E1E2 · · ·Ep and V = Ẽ1Ẽ2 · · · Ẽq.

Thus one has

A = U−1
(
Ir O
O O

)
V −1

= E−1p · · ·E−12 E−11

(
Ir O
O O

)
Ẽ−1q · · · Ẽ−12 Ẽ−11 .
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Note that E−11 , E−12 , . . . , E−1p , Ẽ−11 , Ẽ−12 , . . . , Ẽ−1q are also elementary matrices.
If rank (A) < n, then

det (AB) = det
(
E−1p · · ·E−12 E−11

(
Ir O
O O

)
Ẽ−1q · · · Ẽ−12 Ẽ−11 B

)
= det

(
E−1p

)
· · · det

(
E−12

)
det
(
E−11

)
det
((

Ir O
O O

)
Ẽ−1q · · · Ẽ−12 Ẽ−11 B

)
= det

(
E−1p

)
· · · det

(
E−12

)
det
(
E−11

)
· 0

= 0,

where the third equality follows from Corollary 11 in Lecture 9 and the fact
that in the matrix (

Ir O
O O

)
Ẽ−1q · · · Ẽ−12 Ẽ−11 B

the last n− r rows (and the last n− r columns) are zero rows (zero columns).
If rank (A) = n, then

det (AB) = det
(
E−1p · · ·E−12 E−11 InẼ

−1
q · · · Ẽ−12 Ẽ−11 B

)
= det

(
E−1p

)
· · · det

(
E−11

)
det (In) det

(
Ẽ−1q

)
· · · det

(
Ẽ−11

)
det (B)

= det
(
E−1p · · ·E−12 E−11 InẼ

−1
q · · · Ẽ−12 Ẽ−11

)
det (B)

= det (A) det (B) .

Example 13 Let us consider the two matrices

A =

(
1 2
2 −1

)
and B =

(
3 2
2 3

)
.

Then
det (AB) = det

(
7 8
4 1

)
= −25 = −5 · 5 = det (A)det (B)

We give the following result without proof. However the second point is easy
to prove (Exercise).

Theorem 14 Let A ∈Mn,n (R). Then

1. A is invertible if and only if det (A) 6= 0.

2. If A is invertible, then det
(
A−1

)
= 1

det(A)
.

Example 15 Let A,B ∈Mn,n (R) and let us suppose that

det (A) = 2 and det (B) = −3.

Using the previous theorems we can compute det
(
2A3B−1ATB2

)
(Exercise).
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