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As in the previous lecture, let us consider matrices over R.

1 Elementary operations and determinants

Because of its recursive definition, it is often hard to compute the determinant.
Using elementary operations we can create more zeros in a matrix, but these
operations will change the determinant. Let us see how.

Theorem 1 Let A € M, ,, (R) be square matriz.

(1) If B is obtained from A by interchanging two different rows (elementary row
operation of type i) ) or two different columns (elementary column operation
of type i) ), then

det(B) = —det(A).

(2) If B is obtained from A by multiplying a row (elementary row operation of
type ii)) or a column (elementary column operation of type ii)) by a number
k, then
det(B) =k - det(A).



(8) If B is obtained from A by adding a multiple of some row of A to a different
row (elementary row operation of type iit)) or a multiple of some column of
A to a different column (elementary column operation of type iii)), then

det(B) = det(A).

The proof of the previous theorem is not hard, but its out of the scope of
this course.

Example 2 Let us consider the matrix

1 2 -1
A=12 3 3
4 7 0

Because of point (3) of Theorem 1, we know that the determinant does not
change if we subtract twice the 1-row from the 3-row and the 2-row from the
3-row, so

1 2 -1 1 2 -1
det(A)=det |2 3 3 | =det|2 3 3
2 3 2 0 0 -1

Thus, using Laplace expansion along the third row we have

det (A) = —1- (—=1)3"3 det @ ;) =—(1-3-2-2)=1.

Example 3 Following the previous result we can compute the determinant of
the following matrices:

1 2 _1 lclLaa
A=12 3 3 and B=|“ ‘f“
A7 1 a a a
a a a 1

(Exercise).

2 Some properties on determinants
The following result easily follows from point (2) of Theorem 1.

Theorem 4 Let A € M,, , (R). Then for any number k € R
det (kA) = k™det(A).

Example 5 Let us consider the matrix

=)=l

det (A) =4 —24 = —20=2%-(1—6).

Then



The determinant of diagonal and triangular matrices is quite easy to com-
pute.

Theorem 6 If a square matriz is triangular, then its determinant is the product
of the entries of the main diagonal.

Proof.[Idea] Let us consider an upper triangular matrix A € M,, ,, (R), that is
a matrix of the form

a171 0 R 0 0
* @22 - 0 0
A =
* * T Un—1,n—1 0
* * oo * An,n

where the * represent arbitrary real numbers. Then, by considering recursively
the Laplace expansion along the first row, we find that

det (A) = 01,101,2" " 0n,n-

)

Example 7 Let us consider the matrix

1 2 -1 5
0o -1 7 4
A= 0 O 2 2
0 0 0 -3

The matrix is (lower) triangular. Then, by Theorem 6 we have
det (A)=1-(-1)-2-(=3) =6.

Column operations from a matrix A to a matrix B can be accomplished by
doing the corresponding row operations from A% to B, then take the transpose
to BT back to B. The following theorem tell us that transposing a matrix does
not change its determinatn.

Theorem 8 Let A € M,, , (R). Then
det (AT) = det(A).

Example 9 Let us consider a matrix

e
AT—@ i)

det (AT) =1-4-3-2=-2=1-4-2-3=det(A).

and its transpose

Then



Theorem 10 Let E be an elementary matrix.
1. If E is of type i) then det(E) = —1.

2. If E is of type ii) and is obtained from I by multiplying a row (or a column)
by a number k, then det(E) = k.

3. If E is of type iii), then det(E) = 1.

Proof. In this proof we will consider elementary matrices obtained from I,
with n € N, using a row elementary operation. The case of matrices obtained
by elementary column operations can be proved in a symmetric way.

1. Let us first consider the case of an elementary matrix of type i). Let 4,7
with 1 < i < j < n (the case j < i is proved symmetrically) be such that

I # E. Let us prove our result by induction on n. If n = 2, then

Rl <> Rj
necessarly we
0 1
e-(1 o)

and det (E) = —1.
If n > 2 then, we have

1 7 i n

1 0 - 0 --- 0 --- O\ 1

o1 - 0 - 0 --- 0

0 0 0 1 01 ¢
E = ]

0 0 1 0 01 j

0 0 0 0 1/ n

Let k # 4,j. Then the (k, k)-entry of the matrix is 1 while for all h # k,
the (k, h)-entry of F is 0 (that is, the k-row has zeros everywhere except
at its k-th position). Using Laplace Expansion Theorem, we can consider
the cofactor expansion of E along the k-row and obtain

det (B) = (—=1)M%.1.det(App)+ Y (=10 det (Ag)
h+k
= det(Ach),



where Ay, is of the form

1 i’ J n—1

1 0 0 0 0 1

0 1 0 0 0

0 O 0 1 0 i’
Apr = ,

0 0 1 0 0 L

0 0 -+ 0 - 0 - 1 n—1

for certains 1 < ¢’ < j* < n—1 (resp. j/ < ¢). Note that Ay is an
elmentary matrix of size (n — 1) X (n — 1) and that it can be obtain from
I,,_1 by the elementary row-operation

)

%
I, ——— Ak k-
" Ri/ <—)RJ-/ ?

By inductive hypothesis det (A ) = 1. Thus det (E) =1 as well.

. Let us now consider the case of an elementary matrix of type 4i). Let ¢
and k, with 1 < i < n and k # 0 be such that ﬁ E. Then, we
i i

can prove that det (E) = k (Exercise).
. Let us finally consider the case of an elementary matrix of type iii). Let
i,7 and k with 1 < i < j < n (resp. j < i) and k € R be such that

) E. Then, we can prove that det (E) = 1 (Exercise).
R; = Rj +kR;

Example 11 Let us consider the three elementary matrices

. We have

0 0 1 1.0 0 1 00
Ey=10 1 of, E,=(0 1 0], Es5=[0 1 0
100 00 1 -2 0 1
1
det (Eq1) = —1, det(Ey) = 3 and det (E3) = 1.

The following important result tell us how to compute the determinant of
the product of two matrices.

Theorem 12 (Product Theorem) Let A, B € M,, , (R). Then

det(AB) = det(A) det (B) .



Proof. Let us first consider an elementary matrix E € M, , (R). We know,
from Lecture 8 that the matrix B = E A represents the matrix A after we apply
an elementary row operation and that the matrix C' = AFE represents the matrix
A after we apply an elementary column operation. Combining Theorem 10 with
Theorem 9 of the previous lecture, we have that:

e If F is of type i), then det (E) = —1. Moreover, B is obtained from A by
interchanging two different rows and the matrix C is obtained from A by
interchanging two columns. Thus

det (EA) = det (B) = —det (A) = det (E) det (A)

and
det (AF) = det (C) = —det (A) = det (A) det ().

o If F is of type i), then det (E) = k for a certain number k # 0. The
matrix B is obtained from A by multiplying all elements of a certain row
by k, while the matrix C is obtained from A by multiplying all elements
of a certain column by k. Thus

det (EA) = det (B) = k - det (A) = det (E) det (A4)

and
det (AF) = det (C) =k - det (A) = det (A) det (F)

e If F is of type iii), then det (E) = 1. Moreover B is obtained from A by
adding a multiple of some row of A to a different row, while C' is obtained
from A by adding a multiple of some column of A t a differenc column.
Thus

det (FA) = det (B) = det (A) = det (E) det (A4)

and
det (AE) = det (C) = det (A) = det (A) det (E).

By Theorem 2 of Lecture 9, we know that there exists two invertible matrices
U,V € M, » (R) such that

I, O
)

with = rank (A4). Moreover, from wat we have seen in Lecture 9, we know
that there exists elementary matrices 1, Fs, ..., E,, E1, Fa, ..., E, such that

U=EEy---E, and V=FEE, - E,

Thus one has

A = U1<8’ 8 V-1
I 0

= E_1-~-E51Ef1 (O et

p

T S s
)qu---E2 E.



Note that Efl, E;l, e Ep_l7 Ef17 Egl, R Eq_l are also elementary matrices.
If rank (A) < n, then

det(Epl By ‘B (g g)E L. -EzlﬁllB)
— det (B3) - -det () det (By )det((‘r O>E1 E;lE;lB)

O O
= det( ) -det (E 1) det( ) -0
= 0,

det (AB)

where the third equality follows from Corollary 11 in Lecture 9 and the fact
that in the matrix

b VBB BB

O o) Bt BB

the last n — r rows (and the last n — r columns) are zero rows (zero columns).
If rank (A) = n, then

det (AB) = det (E*1~~E‘1E_1I E,;l...E;El—lB)
= det (B 1) det (E;) det (1,) det (B, 1) -+ det (7 ) det (B)
= det (B! 1E B --E;E;l) det (B)
= det(A)

Example 13 Let us consider the two matrices

1 2 3 2
A<2 _1> and B<2 3>

7 8
4 1

Then

det (AB) = det ( > = —25=—5-5=det (A)det (B)

We give the following result without proof. However the second point is easy
to prove (Exercise).

Theorem 14 Let A € M,,,, (R). Then
1. A is invertible if and only if det (A) # 0.

2. If A is invertible, then det (Afl) = de;(A)'

Example 15 Let A, B € M,, ,, (R) and let us suppose that
det (A) =2 and det(B)= -3.

Using the previous theorems we can compute det (24°B~'A” B?) (Exercise).



