Linear Algebra with Application (LAWA 2021)

 Lecture 11

 Lecture 11}

Francesco Dolce
francesco.dolce@fjfi.cvut.cz
April 28, 2021

1 Block triangular matrices

Let $A \in \mathcal{M}_{m, n}(\mathbb{R})$ and $B \in \mathcal{M}_{p, q}(\mathbb{R})$ be two matrices. We call block upper triangular matrix a matrix of the form

$$
\left(\begin{array}{ll}
A & X \\
O & B
\end{array}\right),
$$

where X is is a matrix of size $m \times q$ and $O=O_{p, n}$. A blok lower triangular matrix will be defined in a symmetrical way.

Theorem 1 Let A and B be two square matrices, possibly of different size. Then

$$
\operatorname{det}\left(\begin{array}{ll}
A & X \\
O & B
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(B)
$$

and

$$
\operatorname{det}\left(\begin{array}{ll}
A & O \\
X & B
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(B) .
$$

Proof. Let us consider the block upper triangular matrix. We can decompose it as

$$
\left(\begin{array}{cc}
A & X \\
O & B
\end{array}\right)=\left(\begin{array}{cc}
I & O \\
O & B
\end{array}\right)\left(\begin{array}{cc}
A & X \\
O & I
\end{array}\right)
$$

From the Product Theorem we know that

$$
\operatorname{det}\left(\begin{array}{cc}
A & X \\
O & B
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
I & O \\
O & B
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
A & X \\
O & I
\end{array}\right)
$$

By repeated cofactor expansions it is easy to see that

$$
\operatorname{det}\left(\begin{array}{cc}
I & O \\
O & B
\end{array}\right)=\operatorname{det}(B) \quad \text { and } \quad \operatorname{det}\left(\begin{array}{cc}
A & X \\
O & I
\end{array}\right)=\operatorname{det}(A)
$$

To prove the result for the block lower triangular matrices we can take the transpose and use Theorem 8 in Lecture 10.

Example 2 Let

$$
A=\left(\begin{array}{ccccc}
1 & 2 & a & b & c \\
2 & 5 & d & e & f \\
0 & 0 & 2 & -1 & 0 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

We have

$$
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right) \operatorname{det}\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)=1 \cdot 8=8
$$

2 Adjacent of a matrix

Let $A \in \mathcal{M}_{n, n}(\mathbb{R})$. We define the adjoint of A the transpose of the matrix of cofactors:

$$
\operatorname{adj}(A)=\left(C_{i, j}(A)\right)^{T}
$$

Note that $\operatorname{adj}(A)$ is also a $n \times n$-matrix. When it is clear from the context, we will write $C_{i, j}$ instead of $C_{i, j}(A)$.

Example 3 Let us consider the matrix

$$
A=\left(\begin{array}{ccc}
3 & 0 & -1 \\
4 & 7 & 3 \\
-2 & 8 & 5
\end{array}\right)
$$

Its adjoint is the matrix:

$$
\begin{aligned}
\operatorname{adj}(A) & =\left(\begin{array}{lll}
C_{1,1} & C_{1,2} & C_{1,3} \\
C_{2,1} & C_{2,2} & C_{2,3} \\
C_{3,1} & C_{3,2} & C_{3,3}
\end{array}\right)^{T} \\
& =\left(\begin{array}{ccc}
C_{1,1} & C_{2,1} & C_{3,1} \\
C_{1,2} & C_{2,2} & C_{3,2} \\
C_{1,3} & C_{2,3} & C_{3,3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
11 & -8 & 7 \\
-26 & 13 & -13 \\
46 & -24 & 21
\end{array}\right)
\end{aligned}
$$

Example 4 Let us consider a generic 2×2-matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Its adjoint is the matrix

$$
\operatorname{adj}(A)=\left(\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right)^{T}=\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)^{T}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Using the Laplace Expansion Theorem, we can obtain the following result.
Theorem 5 (Adjoint Formula) Let A be a square matrix. Then

1. $A \cdot \operatorname{adj}(A)=\operatorname{det}(A) I=\operatorname{adj}(A) \cdot A$.
2. If $\operatorname{det}(A) \neq 0$, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.

Example 6 Let us consider the matrix

$$
A=\left(\begin{array}{ccc}
3 & 0 & -1 \\
4 & 7 & 3 \\
-2 & 8 & 5
\end{array}\right)
$$

Its determinant is

$$
\operatorname{det}(A)=3 \operatorname{det}\left(\begin{array}{ll}
7 & 3 \\
8 & 5
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
4 & 7 \\
-2 & 8
\end{array}\right)=3 \cdot 11-1 \cdot 46=-13
$$

and its adjoint is given in Example 3. Thus the inverse of A is the matrix

$$
A^{-1}=-\frac{1}{13}\left(\begin{array}{ccc}
11 & -8 & 7 \\
-26 & 13 & -13 \\
46 & -24 & 21
\end{array}\right)
$$

3 Cramer's Rule

If A is a $n \times n$-matrix and B is a $n \times 1$-column, then let us set $A_{i}(B)$ the $n \times n$-matrix obtained from A by replacing the i-column by B.

Example 7 Let us consider again the matrix A given in Example 3 and the column $B=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$. Then we have
$A_{1}(B)=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 7 & 3 \\ 1 & 8 & 5\end{array}\right), \quad A_{2}(B)=\left(\begin{array}{ccc}3 & 1 & -1 \\ 4 & 0 & 3 \\ -2 & 1 & 5\end{array}\right) \quad$ and $\quad A_{3}(B)=\left(\begin{array}{ccc}3 & 0 & 1 \\ 4 & 7 & 0 \\ -2 & 8 & 1\end{array}\right)$.
Theorem 8 (Cramer's Rule) Let us consider the system of linear equations $A X=B$, where A is invertible. Then, the unique solution is given by

$$
X^{*}=\left(\begin{array}{c}
x_{1}^{*} \\
x_{2}^{*} \\
\vdots \\
x_{n}^{*}
\end{array}\right)
$$

where

$$
x_{i}^{*}=\frac{\operatorname{det}\left(A_{i}(B)\right)}{\operatorname{det}(A)} \quad \text { for each } i=1,2, \ldots, n .
$$

Example 9 Let us consider the system of linear equations

$$
\left\{\begin{aligned}
5 x_{1}-7 x_{2}+8 x_{3} & =23 \\
2 x_{1}+6 x_{2}-9 x_{3} & =61 \\
-x_{1}-4 x_{2}+3 x_{3} & =19
\end{aligned}\right.
$$

The matrix

$$
A=\left(\begin{array}{ccc}
5 & -7 & 8 \\
2 & 6 & -9 \\
-1 & -4 & 3
\end{array}\right)
$$

is invertible since its determinant is

$$
\operatorname{det}(A)=-127 \neq 0
$$

To find x_{2} let us consider the matrix

$$
A_{2}(B)=\left(\begin{array}{ccc}
5 & 23 & 8 \\
2 & 61 & -9 \\
-1 & -19 & 3
\end{array}\right)
$$

Since $\operatorname{det}\left(A_{2}(B)\right)=313$, we have

$$
x_{2}=\frac{\operatorname{det}\left(A_{2}(B)\right)}{\operatorname{det}(A)}=-\frac{313}{127}
$$

Example 10 Let us consider the system of linear equations

$$
\left\{\begin{aligned}
3 x_{1}-x_{3} & =1 \\
4 x_{1}+7 x_{2}+3 x_{3} & =0 \\
-2 x_{1}+8 x_{2}+5 x_{3} & =1
\end{aligned}\right.
$$

Using the Cramer's Rule we can find the solution (Exercise)

$$
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

4 Diagonalization

Let us recall from Lecture 3 that a $n \times n$-matrix D is called a diagonal matrix if all its entries off the main diagonal are zeros; that is, if D has the form

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are numbers. These numbers are not necessarly reals (we will see an example later), so, instead that in \mathbb{R}, let us suppose that $\lambda_{i} \in \mathbb{C}$ for all i.

A n-square matrix A is called diagonalizable if there exists an invertible matrix $P \in \mathcal{M}_{n, n}(\mathbb{R})$ such that $P^{-1} A P=D$ is diagonal. In this case, the invertible matrix P is called a diagonalizing matrix for A.

Diagonalization is one of the most important ideas inlinear algebra. One of its uses is to give us an efficient method to calculate powers A, A^{2}, A^{3}, \ldots of a square matrix A.

Theorem 11 Let A be a diagonalizable matrix. Let us suppose that P is a diagonalizing matrix and $D=P^{-1} A P$. Then, for any $k \in \mathbb{N}$ one has

$$
A^{k}=P D^{k} P^{-1}
$$

Proof. (Exercise)

