Linear Algebra with Application (LAWA 2021)

 Lecture 12

 Lecture 12}

May 5, 2021

1 Diagonalization (continued)

In the previous lecture we defined diagonalizable and diagonalizing matrices. Here we are going to explain how to diagonalize a matrix. Let us start with an example.

Example 1 Let us diagonalize the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & -1 \\
0 & -3 & 0
\end{array}\right)
$$

By definition, we need to find an invertible matrix P such that

$$
P^{-1} A P=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right),
$$

for certain numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}$. Let us set

$$
P=\left(\begin{array}{lll}
X_{1} & X_{2} & X_{3}
\end{array}\right)
$$

where

$$
X_{1}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad X_{2}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \quad \text { and } \quad X_{3}=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right)
$$

This is equivalent to find X_{1}, X_{2} and X_{3} such that

$$
\begin{aligned}
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & -1 \\
0 & -3 & 0
\end{array}\right)\left(\begin{array}{lll}
X_{1} & X_{2} & X_{3}
\end{array}\right) & =\left(\begin{array}{ccc}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right)\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\lambda_{1} x_{1} & \lambda_{2} y_{1} & \lambda_{3} z_{1} \\
\lambda_{1} x_{2} & \lambda_{2} y_{2} & \lambda_{3} z_{2} \\
\lambda_{1} x_{3} & \lambda_{2} y_{3} & \lambda_{3} x_{3}
\end{array}\right) \\
& =\left(\begin{array}{lll}
\lambda_{1} X_{1} & \lambda_{2} X_{2} & \lambda_{3} X_{3}
\end{array}\right) .
\end{aligned}
$$

Comparing columns, it shows that $P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ if and only if $A X_{i}=\lambda_{i} X_{i}$ for $i=1,2,3$. Moreover, if we want that $P=\left(\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}\right)$ is invertible, we need to make sure that $X_{i} \neq O$.

In the following, we begin to find λ and $X^{*} \neq O$ such that $A X^{*}=\lambda X^{*}$. This is equivalent to asking that the homogenous linear system

$$
\begin{equation*}
\left(A-\lambda I_{3}\right) X=O \tag{1}
\end{equation*}
$$

has a nontrivial solution $X^{*} \neq O$. Using the Gaussian algorithm we reduce the matrix $\left(A-\lambda I_{3}\right)$ into a (reduced) row-echelon form B which is equivalent to left multiplication by a certain invertible matrix, say U, that is we have

$$
U\left(A-\lambda I_{3}\right)=B
$$

By the Product Theorem we have

$$
\operatorname{det}(U) \operatorname{det}\left(A-\lambda I_{3}\right)=\operatorname{det}(B)
$$

Since $\operatorname{det}(U) \neq 0$ (the matrix is invertible), we have

$$
\operatorname{rank}\left(A-\lambda I_{3}\right)=\operatorname{rank}(B)<n \quad \Leftrightarrow \quad \operatorname{det}(B)=0 \quad \Leftrightarrow \quad \operatorname{det}\left(A-\lambda I_{3}\right)=0
$$

Then we compute the determinant of $A-\lambda I_{3}$

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{3}\right) & =\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 2-\lambda & -1 \\
0 & -3 & -\lambda
\end{array}\right) \\
& =(1-\lambda) \operatorname{det}\left(\begin{array}{cc}
2-\lambda & -1 \\
-3 & -\lambda
\end{array}\right) \\
& =(1-\lambda)(-\lambda(2-\lambda)-3) \\
& =(1-\lambda)(\lambda-3)(\lambda+1) .
\end{aligned}
$$

For the equation $\operatorname{det}\left(A-\lambda I_{3}\right)$, we obtain three solutions which are

$$
\lambda_{1}=1, \quad \lambda_{2}=-1 \quad \text { and } \quad \lambda_{3}=3
$$

Then, we substitute each λ_{i} into the Equation (1) to fin a basic solution for each equation. For example, we solve

$$
\left(A-\lambda_{1} I_{3}\right) X_{1}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & -1 \\
0 & -3 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=O
$$

which is equivalent to solve

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

We thus get the general solution

$$
X_{1}^{*}=s\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}
$$

where s is an arbitrary number. We can use, for instance, the basic solution

$$
X_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}
$$

which is not a trivial solution as our solution corresponding to $\lambda_{1}=1$. Similarly, we can get

$$
X_{2}=\left(\begin{array}{lll}
-2 & 1 & 3
\end{array}\right)^{T} \quad \text { and } \quad X_{3}=\left(\begin{array}{lll}
0 & -1 & 1
\end{array}\right)^{T}
$$

corresponding respectively to to $\lambda_{2}=-1$ and $\lambda_{3}=3$. Note that here X_{1}, X_{2}, X_{3} can be arbitrary nonzero solutions corresponding to $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

Thus we can solve the equation

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \quad \Leftrightarrow \quad A P=P \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)
$$

by obtaining

$$
P=\left(\begin{array}{lll}
X_{1} & X_{2} & X_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & -1 \\
0 & 3 & 1
\end{array}\right)
$$

and

$$
\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\operatorname{diag}(1,-1,3)
$$

Using the Matrix Inverse Algorithm we can find

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
1 & -2 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 3 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow[\begin{array}{l}
R_{1} \rightarrow R_{1}+2 R_{2} \\
R_{3} \rightarrow R_{3}-3 R_{2}
\end{array}]{\stackrel{i i i)}{ }}\left(\begin{array}{cccccc}
1 & 0 & -2 & 1 & 2 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 4 & 0 & -3 & 1
\end{array}\right) \\
& \left(\begin{array}{llllll}
1 & 0 & -2 & 1 & 2 & 0 \\
0 & 1 & -1 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow[R_{3} \rightarrow \frac{1}{4} R_{3}]{i i)}\left(\begin{array}{cccccc}
1 & 0 & -2 & 1 & 2 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & -\frac{3}{4} & \frac{1}{4}
\end{array}\right) \\
& \xrightarrow[\substack{R_{1} \rightarrow R_{1}+2 R_{3} \\
R_{2} \rightarrow R_{2}+R_{3}}]{i i i)}\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 1 & 0 & -\frac{3}{4} & \frac{1}{4}
\end{array}\right) .
\end{aligned}
$$

Thus P is invertible and

$$
P^{-1}=\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{4} & \frac{1}{4} \\
0 & -\frac{3}{4} & \frac{1}{4}
\end{array}\right)
$$

In conclusion, we have

$$
P^{-1} A P=\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{4} & \frac{1}{4} \\
0 & -\frac{3}{4} & \frac{1}{4}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & -1 \\
0 & -3 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & -1 \\
0 & 3 & 1
\end{array}\right)=\operatorname{diag}(1,-1,3)
$$

We can generalize the previous example to an $n \times n$-matrix. Finding P such that $P^{-1} A P$ is a diagonal matrix is equivalent to find n column vectors $X_{1}, X_{2}, \ldots, X_{n}$ and n numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ such that

$$
A X_{i}=\lambda_{i} X_{i} \quad \text { for each } i=1,2, \ldots n
$$

Moreover, if $P=\left(\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{n}\end{array}\right)$ is invertible, A is diagonalizable.

2 Eigenvalues and Eigenvectors

Let $A \in \mathcal{M}_{n, n}(\mathbb{R})$. A number λ is called an eigenvalue of A if

$$
A X=\lambda X
$$

for some column $X \neq O$. Such a nonzero column X is called an eigenvector of A corresponding to the eigenvalue λ.

Note that the condition $A X=\lambda X$ is automatically satisfied if $X=O$, so the requirement that $X \neq O$ is critical.

The characteristic polynomial $c_{A}(x)$ is defined by

$$
c_{A}(x)=\operatorname{det}(x I-A)
$$

A number λ is called a root of the characteristic polynomial $c_{A}(x)$ if $c_{A}(\lambda)=0$.
Note that $c_{A}(\lambda)=0$ if and only if $-c_{A}(\lambda)=0$. For this reason, in the following we will work indifferently with both equations $\operatorname{det}(x I-A)=0$ and $\operatorname{det}(A-\lambda I)=0$.

Example 2 Let us consider the matrix

$$
A=\left(\begin{array}{ll}
5 & -2 \\
4 & -1
\end{array}\right)
$$

Its characteristic polynomial is

$$
\begin{aligned}
c_{A}(x) & =\operatorname{det}(x I-A) \\
& =\operatorname{det}\left(x\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{ll}
5 & -2 \\
4 & -1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\left(\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right)-\left(\begin{array}{ll}
5 & -2 \\
4 & -1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
x-5 & 2 \\
-4 & x+1
\end{array}\right) \\
& =(x-5)(x+1)-2(-4) \\
& =x^{2}-4 x+3 \\
& =(x-1)(x-3) .
\end{aligned}
$$

The two roots of the characteristic polynomial are thus $\lambda_{1}=1$ and $\lambda_{2}=3$.
Theorem 3 Let A be a $n \times n$-matrix.

1. The eigenvalues of A are the roots of the characteristic polynomial $c_{A}(x)$ of A.
2. The eigenvectors X corresponding to the eigenvalues λ are the nonzero solutions to the homogenous system of linear equations $(\lambda I-A) X=O$.

Note that there are many eigenvectors of a square matrix A associated with a given eigenvalue λ. In fact every nonzero solution X of $(\lambda I-A) X=O$ is an eigenvector. Of course the eigenvalue λ is chosen so that there must be nonzero solutions.

The eigenvalues of a real matrix need not to be real numbers.
Example 4 Let us find the eigenvalues of the matrix

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The characteristic polynomial of the matrix is $\operatorname{det}(x I-A)=x^{2}+1$. So by Theorem 3, the eigenvalues of A are the nonreal complex roots $\lambda_{1}=i$ and $\lambda_{2}=-i$.

A $n \times n$-matrix has n (possibly complex) eigenvalues, but they may not be distinct.

Example 5 Let us find the eigenvalues of the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Its characteristic polynomial is $c_{A}(x)=(x-1)^{2}$. So there is only one eigenvalue of A, namely $\lambda_{1}=1$. However, λ_{1} is a double root of $c_{A}(x)$ and we say that $\lambda_{1}=1$ has multiplicity 2.

The following result illustrate the previous example
Theorem 6 Let $A \in \mathcal{M}_{n, n}(\mathbb{R})$.

1. A is diagonalizable if and only if it has eigenvectors $X_{1}, X_{2}, \ldots, X_{n}$ such that the matrix

$$
P=\left(\begin{array}{llll}
X_{1} & X_{2} & \cdots & X_{n}
\end{array}\right)
$$

is invertible.
2. When this is the case, we have

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

where, for each i, λ_{i} is the eigenvalue of A corresponding to X_{i}.
Example 7 Let us show that the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

is not diagonalizable.
We know from Example 5 that A has only one eigenvalue $\lambda_{1}=1$, which is of multiplicity 2. But the system of linear equations $\left(\lambda_{1} I-A\right) X=O$ has general solution

$$
X=s\binom{1}{0}
$$

so there is only one basic solution:

$$
X_{1}=\binom{1}{0}
$$

Hence we can only choose

$$
P=\left(\begin{array}{ll}
s & t \\
0 & 0
\end{array}\right)
$$

which is never invertible no matter the choice of s and t.

