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1 Diagonalization (continued)

In the previous lecture we defined diagonalizable and diagonalizing matrices.
Here we are going to explain how to diagonalize a matrix. Let us start with an
example.

Example 1 Let us diagonalize the matrix

1 1 1
A=(0 2 -1
0 -3 0

By definition, we need to find an invertible matrix P such that

A0 0
P'AP =0 X 0| =diag(A1,A2,)3),
0 0 A



for certain numbers A1, Ao, A3. Let us set

P=(X; Xo X3)

where
Z1 Y1 21
Xi=|=m |, Xo= w0 and X3= | 2
z3 Y3 z3

This is equivalent to find X7, Xo and X3 such that

11 1 z1 oy oz\ (A 00
0 2 -1 (Xl X2 Xg) = To Y2 22 0 )\2 0
0 -3 0 T3 Yz 23 0 0 As

w1 Aeyr Azz
= AT >\2y2 A322

)\1563 )\ng /\3:E3
= (MX1 AXe MX3).

Comparing columns, it shows that P7'AP = diag (A1, A2, A3) if and only if
AX; = X, for i = 1,2,3. Moreover, if we want that P = (X1 X5 X3) is
invertible, we need to make sure that X; # O.

In the following, we begin to find A and X* # O such that AX* = A X™*.
This is equivalent to asking that the homogenous linear system

(A=) X =0 (1)

has a nontrivial solution X* # O. Using the Gaussian algorithm we reduce the
matrix (A — Al3) into a (reduced) row-echelon form B which is equivalent to
left multiplication by a certain invertible matrix, say U, that is we have

U(A—-\I;3)=B.
By the Product Theorem we have
det (U) det (A — AI3) = det (B).
Since det (U) # 0 (the matrix is invertible), we have
rank (A — AI3) =rank(B) <n < det(B)=0 < det(A—A3)=0.
Then we compute the determinant of A — A3

1-A 1 1

det (A—A5) = det 0 2—-x -1
0 -3 =

2—-X -1

= (1—=X)det L5 )

= (1=XN(=A2=-)X)=3)
= 1-=-XMNA=3)(A+1).



For the equation det (A — AI3), we obtain three solutions which are
)\1 = 1, )\2 =—1 and )\3 =3.

Then, we substitute each ); into the Equation (1) to fin a basic solution for
each equation. For example, we solve

0 1 1 1
(A*Al.[g)Xl = 0 1 -1 To
0 -3 -1 T3

which is equivalent to solve

0 1 1 T 0
0 01 z2| =10
0 00 T3 0

We thus get the general solution
X;=s(1 0 0)

where s is an arbitrary number. We can use, for instance, the basic solution
Xi=(1 0 0

which is not a trivial solution as our solution corresponding to A; = 1. Similarly,
we can get

Xo=(-2 1 3)" and Xz=(0 -1 1)

corresponding respectively to to Ay = —1 and A3 = 3. Note that here X7, X5, X3
can be arbitrary nonzero solutions corresponding to A1, A2, As.
Thus we can solve the equation

PlAp = diag()\l,/\g,)\g,) < AP = Pdiag ()\1,)\2,/\3)
by obtaining

1
P=(Xi X2 X3)=[0 1 -1
0

and
dlag (>‘1a )‘27 )‘3) = dlag (13 _1, 3) .



Using the Matrix Inverse Algorithm we can find

1 =2 0 100 10 -2 1 2 0
o1 -1 o0o10] —™ v (o1 -1 o0 1 o0
03 1 00 1 Ri = Ry + 2R, 00 4 0 -3 1

R3s — R3 — 3R>

} 10 -2 1 2 0

—m 01 -1 0 1 0

Ry — 1Ry 00 1 0 -3 I
1 00 1 401

) 010 o I ‘%%)
Ry — Ry + 2R5 0 0 1 0 _% 3

R2—>R2+R3

Thus P is invertible and

N
A
Il
O O =
NI
N NN

[

In conclusion, we have

1 % % 1 1 1 1 -2 0
ptAap=1[0 % 7 0 2 —1][0 1 —1|=diag(1,-1,3).
0o -2 3/\0 -3 0/\0 3 1

We can generalize the previous example to an n x n-matrix. Finding P
such that P~'AP is a diagonal matrix is equivalent to find n column vectors
X1,Xo,..., X, and n numbers A1, Ao, ..., A, such that

AX;, =\X,; foreach 1=1,2,...n.
Moreover, if P = (X1 Xy .- Xn) is invertible, A is diagonalizable.

2 Eigenvalues and Eigenvectors

Let A € My, (R). A number X is called an eigenvalue of A if
AX =2X

for some column X # O. Such a nonzero column X is called an eigenvector of
A corresponding to the eigenvalue \.

Note that the condition AX = AX is automatically satisfied if X = O, so
the requirement that X # O is critical.

The characteristic polynomial ca(x) is defined by

ca(z) =det (I — A).

A number X is called a root of the characteristic polynomial c4(z) if c4(A) = 0.

Note that c¢4(A) = 0 if and only if —c4(A\) = 0. For this reason, in the
following we will work indifferently with both equations det (I — A) = 0 and
det (A —AI) =0.



Example 2 Let us consider the matrix
5 =2
A_Q 1)

ca(zr) = det(xl—A)

= 1) (7 )

(696

Its characteristic polynomial is

r—>5
= det —4 x+1
= (z-=5)(x+1)—2(-4)
= 22 —4x+3
= (z—1)(z—3).

The two roots of the characteristic polynomial are thus A\; = 1 and Ay = 3.

Theorem 3 Let A be a n X n-matriz.

1. The eigenvalues of A are the roots of the characteristic polynomial c(x)
of A.

2. The eigenvectors X corresponding to the eigenvalues A are the nonzero
solutions to the homogenous system of linear equations (A\I — A)X = O.

Note that there are many eigenvectors of a square matrix A associated with
a given eigenvalue A. In fact every nonzero solution X of (AJ — A)X = O is an
eigenvector. Of course the eigenvalue A is chosen so that there must be nonzero
solutions.

The eigenvalues of a real matrix need not to be real numbers.

Example 4 Let us find the eigenvalues of the matrix

0 -1
A_Q 0).
The characteristic polynomial of the matrix is det (I — A) = 22 + 1. So by

Theorem 3, the eigenvalues of A are the nonreal complex roots A\; = i and
Ay = —1.

A n x n-matrix has n (possibly complex) eigenvalues, but they may not be
distinct.

Example 5 Let us find the eigenvalues of the matrix

(0 )



Its characteristic polynomial is ¢4 (x) = (z — 1). So there is only one eigenvalue
of A, namely A\; = 1. However, A\ is a double root of c4(z) and we say that
A1 = 1 has multiplicity 2.

The following result illustrate the previous example

Theorem 6 Let A € M, ,, (R).

1. A is diagonalizable if and only if it has eigenvectors X1, Xo, ..., X, such
that the matriz
P= (X1 Xy - Xn)

1s invertible.

2. When this is the case, we have
P7YAP = diag(A1, Moy ..., \y)
where, for each i, \; is the eigenvalue of A corresponding to X;.

Example 7 Let us show that the matrix

11
=)
is not diagonalizable.

We know from Example 5 that A has only one eigenvalue A\; = 1, which is of
multiplicity 2. But the system of linear equations (A I — A)X = O has general

solution
1
X=s (O> ,

so there is only one basic solution:

x= (1)
P~ o)

which is never invertible no matter the choice of s and ¢.

Hence we can only choose



