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1 The Diagonalization Algorithm
In this section we give an altorithm to diagonalize a square matrix.

Diagonalization Algorithm. Let A ∈ Mn,n (R) be a square matrix. To
diagonalize A we apply the following steps:

Step 1. Find all the eigenvalues of A, which are the roots of the character-
istic polynomial cA(x);

Step 2. For each eigenvalue λ compute an eigenvector, by finding the basic
solution of the homogenous system (λI −A)X = O;

Step 3. The matrix A is diagonalizable if and only if there are n basic
eigenvectors in total;

Step 4. If A is diagonalizable, the n×n-matrix P having these eigenvectors
as columns is a diagonalizing matrix for A; that is, P is invertible and P−1AP
is diagonal.
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Example 1 Let us apply the previous algorithm to the matrix

A =

0 1 1
1 0 1
1 1 0

 .

Step 1. Let us first compute the characteristic polynomial

cA(x) = det (xI −A)

= det

 x −1 −1
−1 x −1
−1 −1 x


= det

x− 2 x− 2 x− 2
−1 x −1
−1 −1 x


= det

x− 2 0 0
−1 x+ 1 0
−1 0 x+ 1


= (x− 2)(x+ 1)2,

where to compute the determinant we first added the second and the third row
to the first row, and then we subtracted the first column from the second and
from the third column.

Hence, the equation cA(x) = 0 has two solutions: λ1 = 2 and λ2 = −1, with
the last one having multiplicity two.

Step 2. For λ1 = 2, the system

(λ1I −A)X =

 2 −1 −1
−1 2 −1
−1 −1 2

X = O

solution

X = s

1
1
1

 ,

where t is an arbitrary number. So the basic solution

X1 =

1
1
1


is an eigenvector corresponding to λ1 = 2.

For λ2 = −1, the system

(λ2I −A)X =

−1 −1 −1
−1 −1 −1
−1 −1 −1

X = O
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has general solution

X = s

−11
0

+ t

−10
1


where s and t are arbitrary numbers. Hence there are two basic solutions

X2 =

−11
0

 and X3 =

−10
1


corresponding to λ2 = −1.

Step 3. Since there are three eigenvectors, X1, X2 and X3, we can deduce
that A is diagonalizable.

Step 4. If we take

P =
(
X1 X2 X3

)
=

1 −1 −1
1 1 0
1 0 1

 ,

we find that P is invertible and

P−1 =

 1
3

1
3

1
3

− 1
3

2
3 − 1

3
− 1

3 − 1
3

2
3

 .

Thus

P−1AP = diag (2,−1,−1) =

2 0 0
0 −1 0
0 0 −1

 .

In a general case, an eigenvalue λ of a square matrix A is said to have
multiplicity m if it occurs m times as a root of the characteristic polynomial
cA(x). When the homogenous system (λI − A)X = O is solved, any set of
basic solutions is called a set of basic eigenvectors corresponding to λ. Here the
number of basic eigenvectors equals the number of parameters involved in the
solution of the system (λI −A)X = O.

Theorem 2 A square matrix A is diagonalizable if and only if it the multiplicity
of every eigenvalue λ of A equals the number of basic eigenvectors corresponding
to λ (which is the number of parameters in the solution of (λI −A)X = O).

In this case, the basic solutions of the system (λI−A)X = O become columns
in the invertible diagonalizing matrix P such that P−1AP is diagonal.

Since for each eigenvalues there is at least a basic eigenvector, we have the
following immediate consequence of the previous theorem.
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Corollary 3 If A is a n × n-matrix with n distinct eigenvalues, then A is
diagonalizable.

A good example which illustrate an application of diagonalization is given
in the following example.

Example 4 Let us compute A100 for

A =

1 1 1
0 2 −1
0 −3 0

 .

As we have already seen in the example in the previous lecture, the matrix A
has eigenvalues

λ1 = 1, λ2 = −1 and λ3 = 3,

with corresponding eigenvectors

X1 =

1
0
0

 , X2 =

−21
3

 and X3 =

 0
−1
1

 .

A diagonalizing matrix for A is thus given by the invertible matrix

P =

1 −2 0
0 1 −1
0 3 1


having inverse

P−1 =

1 1
2

1
2

0 1
4

1
4

0 − 3
4

1
4

 .

We thus have

A = P

1 0 0
0 −1 0
0 0 3

P−1.

Thus, using Theorem 11 in Lecture 11, we have

A100 = P

1 0 0
0 −1 0
0 0 3

100

P−1

= P

1 0 0
0 1 0
0 0 3100

P−1

=

1 −2 0
0 1 −1
0 3 1

1 0 0
0 1 0
0 0 3100

1 1
2

1
2

0 1
4

1
4

0 − 3
4

1
4


=

1 0 0

0 1+3101

4
1−3100

4

0 3−3101

4
3+3100

4

 .
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Example 5 Let us consider the matrix

A =

3 −4 2
1 −2 2
1 −5 5

 .

We can computeA20 (to do so we need first to diagonalize the matrix). (Exercise)

2 Similar matrices
Let us consider two square matrices A and B of the same size. We say that A
and B are similar if

B = P−1AP

for some invertible matrix P . When this is the case, we write A ∼ B.
Using this terminology, we can say that a square matrix A is diagonalizable

if and only if it is similar to a diagonal matrix.
Here are some simply properties of similarity.

Proposition 6 Let A,B,C ∈Mn,n (R).

1. A ∼ A.

2. If A ∼ B then B ∼ A.

3. If A ∼ B and B ∼ C, then A ∼ C.

Proof.

• The first point is clear since A = I−1AI, and I is invertible.

• If A ∼ B then there exists an invertible matrix P such that B = P−1AP .
Thus A = PBP−1, with P−1 invertible. That is, B ∼ A.

• Let P and Q be two invertible matrices such that B = P−1AP and C =
Q−1BQ. Thus

C = Q−1
(
P−1AP

)
Q =

(
Q−1P−1

)
A (PQ) = (PQ)

−1
A (PQ) ,

with PQ invertible. Hence A ∼ C.

The properties in the previous proposition are often expressed by saying that
the similarity relation ∼ is an equivalence relation on the set of n× n-matrices.

Proposition 7 Let A,B be two square matrices such that A ∼ B. Then

1. A is invertible if and only if B is invertible, and in this case A−1 ∼ B−1.

2. AT ∼ BT .
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3. Ak ∼ Bk for all k ≥ 0.

Example 8 Let A,B be two square matrices such that A ∼ B. If A is diago-
nalizable, then B is also diagonalizable. (Exercise)

Following the previous example, it is possible to prove that if A is diago-
nalizable, then so are also the matrices AT , A−1 (if it exists) and Ak for all
k ≥ 0.

The following theorem easily follows from the Product Theorem and the
Diagonalization Algorithm.

Theorem 9 Let A,B be two similar matrices. Then

1. det (A) = det (B).

2. cA(x) = cB(x).

3. A and B have the same eigenvalues.

3 Cayley-Hamilton Theorem
Example 10 Let

A =

0 1 1
1 0 1
1 1 0

 .

Then cA(A) = 0.
Indeed, we saw in Example 1 that the characteristic polynomial is

cA(x) = (x− 2)(x+ 1)2

When we evaluate this polynomial at A, we obtain cA(A) = (A− 2I)(A+ I)2.
Let us prove that this evaluation equals wero. Recall from Example 1 that

A = PDP−1 with

P =

1 −1 1
1 1 0
1 0 1

 and D =

2 0 0
0 −1 0
0 0 −1

 .
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So
cA(A) = (A− 2I) (A+ I)

2

=
(
PDP−1 − 2I

) (
PDP−1 + I

)2
=

(
PDP−1 − 2PIP−1

) (
PDP−1 + PIP−1

)2
=

(
P (D − 2I)P−1

) (
P (D + I)P−1

)2
= P (D − 2I)P−1P (D + I)P−1P (D + I)P−1

= P (D − 2I)(D + I)(D + I)P−1

= P

0 0 0
0 −1 0
0 0 −1

3 0 0
0 0 0
0 0 0

2

P−1

= P

0 0 0
0 −1 0
0 0 −1

9 0 0
0 0 0
0 0 0

P−1

= P

0 0 0
0 0 0
0 0 0

P−1

= O.

We can generalize the previous example in the following importan theorem

Theorem 11 (Cayley-Hamilton Theorem) Let A be a square matrix. Thus
cA(A) = O.
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