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As in the previous lecture, let us consider matrices over the field R.

1 Transposition
Let A = (aij) ∈ Mm,n (R) be a matrix. The transpose of A is the matrix
AT ∈Mn,m (R) defined as

AT = (bij) with bij = aji for all i, j.

A matrix A is called symmetric if AT = A.

Example 1 Let

A =

(
3 2
1 0

)
, B =

(
1 0 −2
5 −1 0

)
and C =

(
2 1
1 0

)
.

Then we have

AT =

(
3 1
2 0

)
, BT =

 1 5
0 −1
−2 0

 and CT =

(
2 1
1 0

)
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Moreover, the matrix C is symmetric, while A and B are not.

Proposition 2 Let A,B be two matrices over R having the right size and let
λ ∈ R. Then

1. If A is symmetric then m = n;

2. (AT )T = A;

3. (λA)T = λAT ;

4. (A+B)T = AT +BT ;

5. (AB)T = BTAT .

Proof. (Exercise)

2 Matrix inverse
Let us consider a square matrix A ∈Mn,n (R). A matrix B is called an inverse
of A if AB = I and BA = I. Note that if such a matrix B exists, then it has
the same size as A.

A square matrix having an inverse is called an invertible matrix.

Example 3 Let us consider the matrix A =

(
0 1
1 1

)
∈ M2,2 (R). The matrix

A is invertible and the matrix B =

(
−1 1
1 0

)
one of its inverses. Indeed,

AB =

(
0 1
1 1

)(
−1 1
1 0

)
=

(
1 0
0 1

)
= I

and
BA =

(
−1 1
1 0

)(
0 1
1 1

)
=

(
1 0
0 1

)
= I.

Similarly to what we have done in Lecture 1 (Proposition 9) we can prove
that the inverse of a matrix, when it exists, is unique.

Proposition 4 Let A ∈ Mn,n (R) an invertible matrix. Then its inverse is
unique.

Proof. Let B,C ∈Mn,n (R) and let us suppose that both matrices are inverses
of A. Then

B = BI = B(AC) = (BA)C = IC = C.

Whenever a matrix A is invertible we denote by A−1 its unique inverse.
Note that not all matrices have inverses.
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Example 5 Let us conside the matrix A =

(
1 0
1 0

)
. This matrix is not in-

vertible. Indeed, if we suppose by contradiction that there exists a matrix

B =

(
a b
c d

)
such that AB = I, then we would have

(
1 0
1 0

)(
a b
c d

)
=

(
a b
a b

)
=

(
1 0
0 1

)
.

which implies at the same time that a = 1 and a = 0, a contradiction.

Also, non-square matrices do not have inverses and the zero matrix On is
not invertible neither (Exercise).

Let us now give some properties about inverses.

Theorem 6 The following properties hold for square matrices.

1. The identity matrix I is invertible and its inverse is I itself.

2. If A is invertible, then so is A−1, and
(
A−1

)−1
= A.

3. If A and B are invertible, then so is AB, and (AB)−1 = B−1A−1.

4. Let A1, A2, . . . Ak be invertible matrices, then their product A1A2 · · ·Ak is
also invertible, and (A1A2 · · ·Ak)−1 = A−1

k A−1
k−1 · · ·A

−1
1

5. If A is invertible, then for all k ≥ 1 the matrix Ak is invertible as well
and (Ak)−1 = (A−1)k.

6. If A is invertible, then so is AT , and (AT )−1 = (A−1)T .

7. If AT is invertible, then so is A and A−1 = ((AT )−1)T .

8. If A is invertible and λ 6= 0 is a real number, then λA is also invertible
and (λA)−1 = 1

λA
−1.

Proof.

1. This easily follows from the fact that II = I.

2. The second item also follows from the fact that A−1A = I and AA−1 = I.

3. It holds because

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I.

3



4. Let us prove it by induction on k. The case k = 1 is trivial and the case
k = 2 follows from point 3. So, let us suppose that the property holds
for k − 1, that is that A1A2 · · ·Ak−1 is invertible and that its inverse is
A−1
k−1 · · ·A

−1
2 A−1

1 . Then

(A1A2 · · ·Ak−1Ak) = (A1A2 · · ·Ak−1)Ak

is a product of two invertible matrices and, by the previous point, is
invertible itself. Moreover, its inverse is exactly

A−1
k (A1A2 · · ·Ak−1)

−1 = A−1
k A−1

k−1 · · ·A
−1
2 A−1

1 .

5. This easily follows from the previous item by chosing Ai = A for all
1 ≤ i ≤ k.

6. Using the last point of Proposition 2 we have

AT (A−1)T = (A−1A)T = IT = I

and
(A−1)TAT = (AA−1)T = IT = I.

7. Using both the fact that (AT )−1 = (A−1)T , proved in the previous point,
and that (AT )T = A, proved in Proposition 2, we have

A((AT )−1)T = A((A−1)T )T = AA−1 = I

and
((AT )−1)TA = ((A−1)T )TA = A−1A = I.

8. To prove the last point we use Proposition 17 in Lecture 2 and show that

(λA)

(
1

λ
A−1

)
=

(
λ
1

λ

)(
AA−1

)
= 1I = I

and (
1

λ
A−1

)
(λA) =

(
1

λ
λ

)(
A−1A

)
= 1I = I.

Corollary 7 Let A,B ∈Mn,n (R). If A and AB are both invertible, then B is
also invertible.

Proof. (Exercise)
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3 Diagonal and triangular matrices
A square matrix A = (aij) ∈ Mn,n (R) is called diagonal if every entry not in
the main diagonal is 0, that is if for every i, j with 1 ≤ i, j ≤ n and i 6= j one
has (aij) = 0.

Example 8 The matrices

A =

1 0 0
0 2 0
0 0 −5

 , B =


−1 0 0 0
0 4 0 0
0 0 0 0
0 0 0 1

 , C =

(
0 0
0 0

)

are diagonal.

When a matrix A = (aij) is diagonal, we can also denote it simply as A =
diag (a11, a22, . . . , ann).

Example 9 Let us consider again the three matrices of Example 8. We have

A = diag (1, 2,−5) , B = diag (−1, 4, 0, 1) and C = diag (0, 0) .

Proposition 10 Let A,B ∈Mn,n (R) be two diagonal matrices. Then

1. A+B is diagonal;

2. AB is diagonal.

Proof. (Exercise)

A square matrix A = (aij) is called upper triangular if every entry below
the main diagonal is zero, that if for every i, j with i > j one has aij = 0. An
upper triangular matrix is called strictly upper triangular if the entries on the
main diagonal are zero as well.

In a symmetric way we define lower triangular and strictly lower triangular
matrices.

Example 11 Let us consider the four matrices

A =

6 9 1
0 0 2
0 0 1

 , B =

0 2 2
0 0 1
0 0 0

 , C =

3 0 0
0 0 0
2 1 0

 and D =

0 0 0
5 0 0
7 6 0

 .

The matrices A and B are upper triangular. Moreover the matrix B is strictly
upper triangular. Simarly C and D are lower triangular with D being strictly
lower triangular.

Proposition 12 Let A,B ∈Mn,n (R) be two upper triangular matrices. Then
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1. A+B is upper triangular.

2. AB is upper triangular.

Proof. (Exercise)

A similar result also holds by replacing the condition "upper triangular" with
"strictly upper triangular", "lower triangular" or "strictly lower triangular".
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