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As in the previous lecture, let us consider matrices over the field R.

1 Transposition

Let A = (a;;) € My, (R) be a matrix. The transpose of A is the matrix
AT € M,,.m (R) defined as

AT = (b”) with bij = aj; for all Z,_]

A matrix A is called symmetric if AT = A.
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Example 1 Let

3 2
a=(1) 8

Then we have



Moreover, the matrix C' is symmetric, while A and B are not.

Proposition 2 Let A, B be two matrices over R having the right size and let
A €R. Then

1. If A is symmetric then m = n;
2. (AT)T = A;

3. (AT = \AT;

4. (A+B)T = AT + BT;

5. (AB)T = BT AT,

Proof. (Exercise) "

2 Matrix inverse

Let us consider a square matrix A € M,, ,, (R). A matrix B is called an inverse
of Aif AB =1 and BA = I. Note that if such a matrix B exists, then it has
the same size as A.

A square matrix having an inverse is called an invertible matrix.
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Example 3 Let us consider the matrix A = <1 1

) € Ms 2 (R). The matrix

A is invertible and the matrix B = (11 é) one of its inverses. Indeed,
0 1 -1 1 1 0
= (0 D))= (6 9)-
-1 1 0 1 1 0
pa= () (V1) -6 0) -+

Similarly to what we have done in Lecture 1 (Proposition 9) we can prove
that the inverse of a matrix, when it exists, is unique.

and

Proposition 4 Let A € M,,,, (R) an invertible matriz. Then its inverse is
unique.

Proof. Let B,C € M,, ,, (R) and let us suppose that both matrices are inverses
of A. Then
B = BI = B(AC) = (BA)C = IC = C.

Whenever a matrix A is invertible we denote by A1 its unique inverse.
Note that not all matrices have inverses.



1 0
1 0
vertible. Indeed, if we suppose by contradiction that there exists a matrix

B= <i Z) such that AB = I, then we would have

G a)=Go)=061)

which implies at the same time that a = 1 and a = 0, a contradiction.

Example 5 Let us conside the matrix A = ) This matrix is not in-

Also, non-square matrices do not have inverses and the zero matrix O, is
not invertible neither (Exercise).
Let us now give some properties about inverses.

Theorem 6 The following properties hold for square matrices.
1. The identity matriz I is invertible and its inverse is I itself.
2. If A is invertible, then so is A™1, and (A_l)_1 = A.
3. If A and B are invertible, then so is AB, and (AB)™! = B~1A~L

4. Let Ay, Ao, ... Ag be invertible matrices, then their product A1 As --- Ay is
also invertible, and (A1 A --- Ap) ™t = A,:lA,;ll e A1_1

5. If A is invertible, then for all k > 1 the matriz A* is invertible as well
and (AF)~1 = (A=1)k.

6. If A is invertible, then so is AT, and (AT)=! = (A=1)T.
7. If AT is invertible, then so is A and A~! = ((AT)~1)T.

8. If A is invertible and A # 0 is a real number, then AA is also invertible
and (AA)~! = AL

Proof.
1. This easily follows from the fact that IT = I.
2. The second item also follows from the fact that A='A =T and AA~! = 1.
3. It holds because
(AB)Y(B™'A ™) = A(BB DA ' = ATA ' = AA™ =1
and

(B'A™Y)Y(AB)=B ' (A'A)B=B"'IB=B"'B=1



4. Let us prove it by induction on k. The case k = 1 is trivial and the case
k = 2 follows from point 3. So, let us suppose that the property holds
for k£ — 1, that is that A1 As--- Ap_q is invertible and that its inverse is
At - AZTATY. Then

(A1Ag - A1 Ap) = (A1 Ay - A1) Ay

is a product of two invertible matrices and, by the previous point, is
invertible itself. Moreover, its inverse is exactly

AN (AL Ay A TH = AMA AT AT

5. This easily follows from the previous item by chosing A; = A for all
1<i<k.

6. Using the last point of Proposition 2 we have
AT(A Y = AT =1T =1

and
(A HTAT =(AaAa YT =1" = 1.

7. Using both the fact that (A7)~ = (A=) proved in the previous point,
and that (AT)T = A, proved in Proposition 2, we have

A((AT) T = A((ATHTYT = A4 =1

and
((AT)_l)TA = ((A_l)T)TA =A'A=1T.

8. To prove the last point we use Proposition 17 in Lecture 2 and show that

(AA) <1\A1> = (/\/1\> (AA ) =1I=1
and

<}\A1) (AA4) = (ix) (A7) =1 =1,

Corollary 7 Let A,B € M,, , (R). If A and AB are both invertible, then B is

also invertible.

Proof. (Exercise) "



3 Diagonal and triangular matrices

A square matrix A = (a;;) € M, (R) is called diagonal if every entry not in
the main diagonal is 0, that is if for every 4,7 with 1 < 4,5 < n and ¢ # j one
has (aij) =0.

Example 8 The matrices

1.0 0 0
1 0 0
0 4 0 0 0 0
A_8(2)05’B_0000’C_<00)
0 0 0 1

are diagonal.

When a matrix A = (a;;) is diagonal, we can also denote it simply as A =
diag (a11,a22, ..., ann)-

Example 9 Let us consider again the three matrices of Example 8. We have
A =diag(1,2,-5), B =diag(—1,4,0,1) and C = diag(0,0).

Proposition 10 Let A, B € M,, ,, (R) be two diagonal matrices. Then
1. A+ B is diagonal;
2. AB is diagonal.

Proof. (Exercise) n

A square matrix A = (a;;) is called upper triangular if every entry below
the main diagonal is zero, that if for every ¢,j with ¢ > j one has a;; = 0. An
upper triangular matrix is called strictly upper triangular if the entries on the
main diagonal are zero as well.

In a symmetric way we define lower triangular and strictly lower triangular
matrices.

Example 11 Let us consider the four matrices
6 9 1 0 2 2 3 00 0 0 0
A=(0 0 2|, B=|0 0 1], C={0 0 O0fJand D=|5 0 O
0 0 1 0 0 0 210 7 6 0

The matrices A and B are upper triangular. Moreover the matrix B is strictly
upper triangular. Simarly C' and D are lower triangular with D being strictly
lower triangular.

Proposition 12 Let A, B € M,, ,, (R) be two upper triangular matrices. Then



1. A+ B is upper triangular.
2. AB is upper triangular.

Proof. (Exercise) n

A similar result also holds by replacing the condition "upper triangular" with
"strictly upper triangular", "lower triangular" or "strictly lower triangular".



