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In this lecture we introduce linear equations and systems of linear equations.
We also discuss how to use matrices to represent and solve such equations.

1 Variables, coefficients and solutions
We call a linear equation in the variables x1, x2, . . . , xn, with n ∈ N, an equation
of the form

a1x1 + a2x2 + · · · + anxn = b, (1)

where a1, a2, . . . , an, b ∈ R. The numbers a1, a2, . . . , an are called the coefficients
of the variables x1, x2, . . . , xn, while the number b is called the constant term of
the equation.

We can represent the coefficients using the row

A =
(
a1 a2 · · · an

)
called the coefficient row of the equation, and the variables using the column

1



matrix

X =


x1

x2

...
xn

 ,

called the matrix of variables of the equation.
A column

X0 =


s1
s2
...
sn


is called a solution of the linear Equation (1) if

A ·X0 = a1s1 + a2s2 + · · · + ansn = b

that is, if replacing xi with si for every 1 ≤ i ≤ n on the right side, we obtain b.

Example 1 Let us consider the linear equation

2x1 + x2 − x3 = 3

The coefficients of the variables x1, x2, x3 are respectively 2, 1 and −1, while the
constant term of the equation is 3. The coefficient row is

A =
(
2 1 −1

)
and a solution of the linear equation is

X0 =
(
1 1 0

)T
since

2 · 1 + 1 · 1 − 1 · 0 = 3.

Another possible solution for the equation is X1 =
(
1 0 −1

)T .
From the previous example, we see that the solution of a linear equation,

in general, is not unique. We call a possible solution a particular solution of
the equation. A way to find all solutions of an equation is given by fixing two
variables and compute the third one with respect to the previous.

Example 2 Let us consider the equation in Example 1. By setting x1 = s and
x2 = t, we find that 2s + t − x3 = 3, which implies that x3 = 2s + t − 3. So,
all solutions have the form

X =
(
s t 2s+ t− 3

)T
for certain s, t ∈ R.

Following the terminology of the previous example, we call X the general
solution of the equation and s, t the parameters of the solution.
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2 Systems of linear equations
A system of linear equations is a finite collection of linear equations. Its general
form is 

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

, (2)

where x1, x2, . . . , xn are variables and the coefficients ai,j and the constant terms
bi, with 1 ≤ i ≤ m and 1 ≤ j ≤ n, are in R. When we need more precision, we
call the previous system a system of m equations in n variables.

A solution satisfying every equation of a system is called a solution of the
system.

Example 3 The system of two linear equations in the variabels x, y{
x+ y = 10
2x− y = 5

(3)

has an unique solution X0 =
(
5 5

)T .
Note that some system may have no solution. In this case we say that the

system is inconsistent.

Example 4 The system {
x+ y = 1

2x+ 2y = 3
(4)

has no solution (Exercise), so it is inconsistent.

A system with at least one solution is called consistent.

Example 5 The system {
x+ y + z = 2
x− y + z = 0

(5)

has infintely many solution (Exercise). Thus it is consistent.

Let us now show how we can represent a system ofm equations in n variables,
like the one in Equation 2, using matrices. The coefficient matrix and the
constant matrix for this system are respectively the m × n-matrix and the m-
column defined as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 and B =


b1
b2
...
bm

 .
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We can also combine the two to obtain the augmented matrix defined as the
m× (n+ 1)-matrix 

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

 .

Example 6 Let us consider the system (3). Its matrix of variable is X =

(
x
y

)
while its constant matrix and its coefficient matrix are respectively

A =

(
1 1
2 −1

)
and B =

(
10
5

)
.

Its augmented matrix is the (2× 3)-matrix(
1 1 10
2 −1 5

)
.

Note that, using the coefficient matrix, the variable matrix and the constant
matrix, we can represent the system of linear equations (2) as a single matrix
equation

AX = B. (6)

Example 7 Using Example 6 we can represent the system (3) as the matrix
equation (

1 1
2 −1

)(
x
y

)
=

(
10
5

)
.

Example 8 Les us consider the system of three linear equations in four vari-
ables  x1 − x4 + x3 = 5

x3 − 3x4 = −1
x4 = 2

. (7)

The previous system is in a very special form and can be solved by using back-
substitution.

- From the last equation we get x4 = 2.

- Then we substitute 2 for the variable x4 into the second last equation to
solve for x3 = 5.

- We substitute x3 = 5 and x4 = 2 and obtain x1 = 2.

- Finally we replace x2 with a parameter s.
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The general solution of the original system has thus the form

X =
(
4s s 5 2

)T
,

where s is the parameter of the solution. That means that every solution can
be obtained by replacing s with a real number.

The system of linear equations presented in Example 8 was in a very special
form. In the next sections we will see how to use this technique to solve a system
in a more general form.

3 Equivalent systems
Two systems of linear equations having the same set of solutions are called
equivalent.

Example 9 Let us consider the system in Example 5 and let us swap the two
equations: {

x− y + z = 0
x+ y + z = 2

. (8)

It is clear that this new system is equivalent to the system (5).

Example 10 Starting again from the system in Example 5, let us multiply the
left and the right term of the second equation by 2:{

x+ y + z = 2
2x− 2y + 2z = 0

. (9)

One can see that this system is also equivalent to the system (5). (Exercise)

Example 11 Using one more time the system in Example 5, let us replace the
second equation by the sum of the two original equations.{

x+ y + z = 2
2x+ 2z = 2

. (10)

Also in this case it can be shown that the system is equivalent to (5). (Exercise)

Following the previous examples we define the three elementary operations
on a system of linear equation as:

i) interchange two equations;

ii) multiply one of the equations by a nonzero number;

iii) add a multiple of one equation to a different equation.

A similar set of operations can be defined also on matrices. We call elemen-
tary row operations on a matrix the following operations:
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i) interchange two rows;

ii) multiply one of the rows by a nonzero number;

iii) add a multiple of one row to a different row.

These row operations can be seen as the counterpart of the elementary op-
erations on system on the related augmented matrices.

Example 12 Let us consider the system of linear equations (5). Its augmented
matrix is (

1 1 1 2
1 −1 1 0

)
.

The augmented matrices of the systems (8), (9) and (10) are respectively:(
1 −1 1 0
1 1 1 2

)
,

(
1 1 1 2
2 −2 2 0

)
and

(
1 1 1 2
2 0 2 2

)
.

They are obtained by the first matrix by applying an elementary row operation
of type, respectively, i), ii) and iii). Indeed one has(

1 1 1 2
1 −1 1 0

)
i)−−−−−−→

R1 ↔ R2

(
1 −1 1 0
1 1 1 2

)
,

(
1 1 1 2
1 −1 1 0

)
ii)−−−−−−→

R2 → 2R2

(
1 1 1 2
2 −2 2 0

)
and (

1 1 1 2
1 −1 1 0

)
iii)−−−−−−−−−→

R2 → R1 + R2

(
1 1 1 2
2 0 2 2

)
.

Theorem 13 Let us consider a system of linear equations. The system obtained
by applying an elementary operation is equivalent to the original system.

The previous theorem tells us that in order to find the solution of a system
we can apply a series of elementary operations to reduce this system to one
which is easier to solve.

6


