Linear Algebra with Application (LAWA 2021)

 Lecture 6

 Lecture 6}

March 24, 2021

In this lecture we will consider the special case of a system of linear equations where all the constant terms are zero. We will see that this extra condition garantuees the presence of at least one solution.

1 Homogeneous systems

Let us consider a system of linear equations in which all the constant terms are zero, such as the following one

$$
\left\{\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =0 \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =0 \\
& \vdots \\
& \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =0
\end{align*}\right.
$$

Such a system is called homogeneous. It is clear that when choosing $x_{1}=x_{2}=$ $\cdots=x_{n}=0$ the equations are satisfied. Thus a homogeneous system has always (at least) one solution, namely $X_{0}=\left(\begin{array}{llll}0 & 0 & \cdots & 0\end{array}\right)^{T}$. We call this solution
the trivial solution of the homogeneous system. Any other possible solution, that is if at least one of the entries is non-zero, is called a non-trivial solution.

From what seen in the previous lecture we can prove the following result.

Theorem 1 If a homogeneous system of linear equations has more variables than equations, then it has nontrivial solutions.

Proof. Let us consider a system of m linear equations in n variables and let us suppose that $n>m$. Let A be the augmented matrix of the system. We know that the system has at least one solution, the trivial one. Since $\operatorname{rank}(A) \leq m<$ n, it follows from Theorem 6 of Lecture 5 , that the system has infinitely many solutions.

Example 2 Let us consider the following homogeneous system

$$
\left\{\begin{array}{r}
x_{1}-2 x_{2}+4 x_{3}-x_{4}+5 x_{6}=0 \\
-2 x_{1}+4 x_{2}-7 x_{3}+x_{4}+2 x_{5}-8 x_{6}=0 \\
3 x_{1}-6 x_{2}+12 x_{3}-3 x_{4}+x_{5}+15 x_{6}=0 \\
2 x_{1}-4 x_{2}+9 x_{3}-3 x_{4}+3 x_{5}+12 x_{6}=0
\end{array} .\right.
$$

The augmented matrix of this system is

$$
\left(\begin{array}{ccccccc}
1 & -2 & 4 & -1 & 0 & 5 & 0 \\
-2 & 4 & -7 & 1 & 2 & -8 & 0 \\
3 & -6 & 12 & -3 & 1 & 15 & 0 \\
2 & -4 & 9 & -3 & 3 & 12 & 0
\end{array}\right)
$$

The $(1,1)$-entry being the first leading 1 , we proceed as in the previous lecture to clean the rest of the 1 -column and, after that, to find the other leading 1 s ; we continue with elementary row operations until we obtain the reduced rowechelon matrix (Exercise)

$$
\left(\begin{array}{ccccccc}
1 & -2 & 0 & 3 & 0 & -3 & 0 \\
0 & 0 & 1 & -1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Thus the original system is equivalent to the following one:

$$
\left\{\begin{array}{rl}
x_{1}-2 x_{2}+3 x_{4}-3 x_{6} & =0 \\
x_{3}-x_{4}+2 x_{6} & =0 \\
x_{5} & =0
\end{array} .\right.
$$

The leading 1s in the augmented matrix correspond to the variables x_{1}, x_{3} and x_{5}, and the rank of the system is 3 . The other variables, i.e., x_{2}, x_{4} and x_{6} are called non-leading variables. To find the general solution we will associate
some parameters, let us call them s, t and u, to the non-leading variables. The general solution has thus the form

$$
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{c}
2 s-3 t+3 u \\
s \\
t-2 u \\
t \\
0 \\
u
\end{array}\right)=s\left(\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-3 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right)+u\left(\begin{array}{c}
3 \\
0 \\
-2 \\
0 \\
0 \\
1
\end{array}\right)
$$

Let us denote

$$
X_{1}=\left(\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad X_{2}=\left(\begin{array}{c}
-3 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \quad \text { and } \quad X_{3}=\left(\begin{array}{c}
3 \\
0 \\
-2 \\
0 \\
0 \\
1
\end{array}\right)
$$

We call X_{1}, X_{2} and X_{3} basic solutions of the system. The general solution X is a linear combination of the three basic solutions, since

$$
X=s X_{1}+t X_{2}+u X_{3}
$$

for any choice of s, t and u.
We can generalize the previous example in the following theorem.
Theorem 3 Let us consider a system of homogeneous linear equations in n variables and let us suppose that its rank is r. Then

- The Gaussian algorithm produces exactly $n-r$ basic solutions;
- Every solution is a linear combination of these basic solutions.

Given a general system of linear equations we can associate to it a homogeneous system by replacing the constant terms with zero. We will refer to this system as the associated homogeneous system of the original one.

Example 4 Let us consider the following system of 3 linear equations in 4 variables

$$
\left\{\begin{array}{rl}
x_{1}-2 x_{2}+x_{3}+x_{4} & =2 \tag{2}\\
-x_{1}+2 x_{2}+x_{4} & =1 \\
2 x_{1}-4 x_{2}+x_{3} & =1
\end{array} .\right.
$$

A possible solution of the system 2 is

$$
X_{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

Note that this particular solution is not, in general, unique and it is not always easy to find.

As seen in a previous lecture, we can rewrite this sytem of linear equations as a single matrix equation

$$
A X=B
$$

where

$$
A=\left(\begin{array}{cccc}
1 & -2 & 1 & 1 \\
-1 & 2 & 0 & 1 \\
2 & -4 & 1 & 0
\end{array}\right), \quad X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right), \quad \text { and } \quad B=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

are respectively the coefficient matrix, the matrix of variables and the matrix of constants of the system.

The associated homogeneous system is represented by the matrix equation

$$
\left(\begin{array}{cccc}
1 & -2 & 1 & 1 \tag{3}\\
-1 & 2 & 0 & 1 \\
2 & -4 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

By reduction of the augmented matrix of the homogeneous system in a reduced row-echelon form

$$
\begin{array}{ccccc}
\left(\begin{array}{ccccc}
1 & -2 & 1 & 1 & 0 \\
-1 & 2 & 0 & 1 & 0 \\
2 & -4 & 1 & 0 & 0
\end{array}\right)
\end{array} \begin{aligned}
& \substack{ \\
R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1}}
\end{aligned}\left(\begin{array}{ccccc}
1 & -2 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & -1 & -2 & 0
\end{array}\right)
$$

we find that the general solution of the system (3) is

$$
X^{\prime}=s\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
1 \\
0 \\
-2 \\
1
\end{array}\right)
$$

where s and t are parameters representing arbitrary numbers.
The general solution of the system (2) is

$$
X=X_{0}+X^{\prime}=X_{0}+s X_{1}+t X_{2}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)+s\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
1 \\
0 \\
-2 \\
1
\end{array}\right)
$$

with s and t arbitrary numbers, X_{0} the particular solution seen before and X_{1}, X_{2} the basic solutions computed above.

The previous example illustrate the following theorem.
Theorem 5 Let us consider the system of linear equations $A X=B$, and let us suppose that X_{0} is a particular solution. Then

1. if X^{\prime} is a solution to the associated homogeneous system $A X=O$, then $X=X_{0}+X^{\prime}$ is a solution to the system $A X=B$.
2. Every solution to the system $A X=B$ has the form $X=X_{0}+X^{\prime}$ for some solution X^{\prime} to the associated homogeneous system $A X=O$.

Example 6 Let us consider the system of linear equations

$$
\left\{\begin{array}{rl}
x_{1}-2 x_{2}+2 x_{3}-x_{4} & =1 \\
2 x_{1}-4 x_{2}+3 x_{3}+x_{4} & =2 \\
3 x_{1}-6 x_{2}+5 x_{3} & =3
\end{array} .\right.
$$

Using the Gaussian elimination and Theorem 5, we can write the general solution to the system as the sum of a particular solution and the general solution to the associated homogeneous system (Exercise).

