Linear Algebra with Application (LAWA 2021)

 Lecture 7

 Lecture 7}

March 31, 2021

In this lecture, as well as in the following ones, we will consider matrices over \mathbb{R}. However most of the results can be generalized using any field (like \mathbb{Q} or \mathbb{C}).

1 The Matrix Inverse algorithm

In Lecture 3 we defined the inverse of a square matrix A as the matrix B such that

$$
A B=I \quad \text { and } \quad B A=I
$$

where B has the same size of A and I is the identity matrix.
Example 1 Let us consider the matrix

$$
A=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right) \in \mathcal{M}_{2,2}(\mathbb{R})
$$

Let us prove that the inverse of A is its square A^{2}. Indeed, the matrix A^{2} is given by

$$
A^{2}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)
$$

while the matrix A^{3} is

$$
A^{3}=A^{2} A=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

Thus $A A^{2}=A^{3}=I$ and $A^{2} A=A^{3}=I$, which prove the claim.
Finding the inverse of a given square matrix, when this exists, is not generally a trivial task. In the following example we show how to use the tools from the previous lectures in order to find the inverse of a matrix.

Example 2 Let us consider the 2×2 matrix

$$
A=\left(\begin{array}{cc}
2 & -5 \\
1 & 2
\end{array}\right)
$$

and let us suppose that its inverse exists and has the form

$$
B=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)
$$

for certains $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$.
Since $B A=I$, we have

$$
\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)\left(\begin{array}{cc}
2 & -5 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
2 x_{1}+x_{2} & -5 x_{1}+2 x_{2} \\
2 x_{3}+x_{4} & -5 x_{3}+2 x_{4}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

which is equivalent to the system of four linear equations in four variables

$$
\left\{\begin{align*}
2 x_{1}+x_{2} & =1 \tag{1}\\
-5 x_{1}+2 x_{2} & =0 \\
2 x_{3}+x_{4} & =0 \\
-5 x_{3}+2 x_{4} & =1
\end{align*}\right.
$$

Using the Gaussian algorithm on the augmented matrix of the system (1), we can find the equivalent matrix in reduced row-echelon form as follows:

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
2 & 1 & 0 & 0 & 1 \\
-5 & -2 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & -5 & 2 & 1
\end{array}\right) \xrightarrow[R_{1} \rightarrow \frac{1}{2} R_{1}]{i i)}\left(\begin{array}{ccccc}
1 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
-5 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & -5 & 2 & 1
\end{array}\right) \\
& \xrightarrow[R_{2} \rightarrow R_{2}+5 R_{1}]{i i i)}\left(\begin{array}{ccccc}
1 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & \frac{9}{2} & 0 & 0 & \frac{5}{2} \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & -5 & 2 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[R_{2} \rightarrow \frac{2}{9} R_{2}]{i i)}\left(\begin{array}{ccccc}
1 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 1 & 0 & 0 & \frac{5}{9} \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & -5 & 2 & 1
\end{array}\right) \\
& \xrightarrow[R_{1} \rightarrow R_{1}-\frac{1}{2} R_{2}]{i i i)}\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{2}{9} \\
0 & 1 & 0 & 0 & \frac{5}{9} \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & -5 & 2 & 1
\end{array}\right) \\
& \xrightarrow[R_{3} \rightarrow \frac{1}{2} R_{3}]{i i)}\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{2}{9} \\
0 & 1 & 0 & 0 & \frac{5}{9} \\
0 & 0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & -5 & 2 & 1
\end{array}\right) \\
& \xrightarrow[R_{4} \rightarrow R_{4}+5 R_{3}]{i i i)}\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{2}{9} \\
0 & 1 & 0 & 0 & \frac{5}{9} \\
0 & 0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{9}{2} & 1
\end{array}\right) \\
& \xrightarrow[R_{4} \rightarrow \frac{2}{9} R_{4}]{i i)}\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{2}{9} \\
0 & 1 & 0 & 0 & \frac{5}{9} \\
0 & 0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 & \frac{2}{9}
\end{array}\right) \\
& \xrightarrow[R_{3} \rightarrow R_{3}-\frac{1}{2} R_{4}]{i i i)}\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{2}{2} \\
0 & 1 & 0 & 0 & \frac{5}{9} \\
0 & 0 & 1 & 0 & -\frac{1}{9} \\
0 & 0 & 0 & 1 & \frac{2}{9}
\end{array}\right) .
\end{aligned}
$$

Thus we get the solution

$$
X=\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right)^{T}=\left(\begin{array}{cccc}
\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} & \frac{2}{9}
\end{array}\right)^{T}
$$

One can check that considering the system of linear equations associated to the matrix equation

$$
A B=\left(\begin{array}{cc}
2 & -5 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)=\left(\begin{array}{cc}
2 x_{1}-5 x_{3} & 2 x_{2}-5 x_{4} \\
x_{1}+2 x_{3} & x_{2}+2 x_{4}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

one find the same solution (Exercise).
The (unique) inverse of A is thus the matrix

$$
B=\left(\begin{array}{cc}
\frac{2}{9} & \frac{5}{9} \\
-\frac{1}{9} & \frac{2}{9}
\end{array}\right)=\frac{1}{9}\left(\begin{array}{cc}
2 & 5 \\
-1 & 2
\end{array}\right) \in \mathcal{M}_{2,2}(\mathbb{R}) .
$$

The following result gives us a method to compute the inverse of an invertible matrix using the Gaussian Algorithm.

Theorem 3 (Matrix Inverse Algorithm) Let A be a square matrix. If there exists a sequence of elementary row operations that carry $A \rightarrow I$, then A is invertible and this same sequence carries $I \rightarrow A^{-1}$. Thus, applying the same sequence of row operations on the matrix $\left(\begin{array}{ll}A & I\end{array}\right)$, one has the reduction

$$
\left(\begin{array}{ll}
A & I
\end{array}\right) \rightarrow\left(\begin{array}{ll}
I & A^{-1}
\end{array}\right)
$$

Example 4 Let A be the matrix defined in Example 2. The reduction to the reduced row-echelon form of the matrix $\left(\begin{array}{ll}A & I\end{array}\right)$ is the following

$$
\left.\begin{array}{cccc}
\left(\begin{array}{ccc}
2 & -5 & 1 \\
1 \\
1 & 2
\end{array}\right. & 0 & 1
\end{array}\right) \xrightarrow{\substack{i) \\
R_{1} \leftrightarrow R_{2}}} \begin{gathered}
\stackrel{i i i)}{R_{2} \rightarrow R_{2}-2 R_{1}}
\end{gathered} \begin{array}{cccc}
\begin{array}{l}
i i) \\
R_{2} \rightarrow-\frac{1}{9} R_{2} \\
R_{1} \rightarrow R_{1}-2 R_{2}
\end{array}
\end{array}\left(\begin{array}{cccc}
1 & 2 & 0 & 1 \\
2 & -5 & 1 & 0
\end{array}\right)
$$

Thus the inverse of the matrix $\left(\begin{array}{cc}2 & -5 \\ 1 & 2\end{array}\right)$ is the matrix $\left(\begin{array}{cc}\frac{2}{9} & \frac{5}{9} \\ -\frac{1}{9} & \frac{2}{9}\end{array}\right)$ (that is consistent with what we have seen in Example 2).

Using Theorem 3 we can find a formula to the inverse of an invertible 2×2 matrix.

Example 5 Let us consider the 2×2-matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

with $a, b, c, d \in \mathbb{R}$ and $a d-b c \neq 0$. Then A is invertible and its inverse is the matrix

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Indeed, by using the algorithm described in Theorem 3 we have the reduction (Exercise)

$$
\left(\begin{array}{llll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right) \quad \longrightarrow\left(\begin{array}{cccc}
1 & 0 & \frac{d}{\Delta} & -\frac{b}{\Delta} \\
0 & 1 & -\frac{c}{\Delta} & \frac{a}{\Delta}
\end{array}\right)
$$

where $\Delta=a d-b c$ is called the determinant of A. We also call the matrix

$$
\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

the adjoint of A (we will discuss more about determinants and adjoints later).

To double check we can also verify that

$$
\begin{aligned}
A A^{-1} & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& =\frac{1}{a d-b c}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& =\frac{1}{a d-b c}\left(\begin{array}{cc}
a d-b c & 0 \\
0 & -c b+a d
\end{array}\right) \\
& =I
\end{aligned}
$$

and

$$
\begin{aligned}
A^{-1} A & =\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\frac{1}{a d-b c}\left(\begin{array}{cc}
a d-b c & 0 \\
0 & -b c+a d
\end{array}\right) \\
& =I .
\end{aligned}
$$

Example 6 Let us consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & -5 \\
4 & 1 & 1
\end{array}\right)
$$

Using the matrix inverse algorithm we can show that (Exercise) the inverse of A is the matrix

$$
B=\frac{1}{26}\left(\begin{array}{ccc}
-8 & 3 & 7 \\
22 & -5 & -3 \\
10 & -7 & 1
\end{array}\right)
$$

To make sure that the answer is right it is enough to verify that $A B=I$ and $B A=I$.

If a matrix A is not invertible, then no sequence of row operations can carry $A \rightarrow I$. Hence the algorithm breaks down because a row of zeros is encountered.

Example 7 The matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & 3 \\
4 & 7 & 1
\end{array}\right)
$$

has no inverse. Indeed, let us try the matrix inverse algorithm on A.

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
2 & 3 & 3 & 0 & 1 & 0 \\
4 & 7 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow[\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1}}]{\left.\stackrel{i i i)}{ }\left(\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & -1 & 5 & -2 & 1 & 0 \\
0 & -1 & 5 & -4 & 0 & 1
\end{array}\right)\right) ~} \\
& \xrightarrow[R_{2} \rightarrow-R_{2}]{i i)}\left(\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -5 & 2 & -1 & 0 \\
0 & -1 & 5 & -4 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow[\substack{R_{1} \rightarrow R_{1}-2 R_{2} \\
R_{3} \rightarrow R_{3}+R_{2}}]{i i i)}\left(\begin{array}{cccccc}
1 & 0 & 9 & -3 & 2 & 0 \\
0 & 1 & -5 & 2 & -1 & 0 \\
0 & 0 & 0 & -2 & -1 & 1
\end{array}\right) .
$$

Since A will never be transformed to the identity matrix by elementary row operations, A is not invertible.

2 Inverses and systems of linear equations

As we have seen in Lecture 5, some systems of linear equations have a unique solution. Here we show how to find such a solution.

Theorem 8 Let us consider a system of n linear equations in n variables and let us suppose that we can write this system in matrix form as

$$
A X=B
$$

If the n-square matrix A is invertible, the system has the unique solution

$$
X=A^{-1} B
$$

Proof. Note that, since the system of linear equations has n equations and n variables, then A has size $n \times n$. Since A^{-1} is well defined, and A^{-1} and B have size respectively $n \times n$ and $n \times 1$, then X is also well defined and it has size $n \times 1$. Thus the system has at least one solution, namely X.

Moreover, since A is invertible, then we can use the matrix inverse algorithm to reduce the matrix $\left(\begin{array}{ll}A & I_{n}\end{array}\right)$ to $\left(\begin{array}{ll}I_{n} & A^{-1}\end{array}\right)$. Using the same sequence of row operations we can thus reduce

$$
A \rightarrow I_{n}
$$

which implies that $\operatorname{rank}(A)=\operatorname{rank}\left(I_{n}\right)=n$. Thus, from what we have seen in Lecture 5, the solution X is unique.

Example 9 Let us consider the system of linear equations

$$
\left\{\begin{array}{rl}
2 x-5 y & =1 \\
x+2 y & =2
\end{array} .\right.
$$

This system of linear equations corresponds to the matrix equation

$$
\begin{equation*}
A X=B \tag{2}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{cc}
2 & -5 \\
1 & 2
\end{array}\right), \quad X=\binom{x}{y} \quad \text { and } \quad B=\binom{1}{2}
$$

From Example 2 we know that A is invertible and that its inverse is

$$
A^{-1}=\left(\begin{array}{cc}
\frac{2}{9} & \frac{5}{9} \\
-\frac{1}{9} & \frac{2}{9}
\end{array}\right)
$$

Thus. multiplying both sides of Equation 2 by A^{-1} we obtain

$$
\begin{aligned}
A^{-1} A X & =A^{-1} B \\
I X & =\left(\begin{array}{ll}
\frac{2}{9} & \frac{5}{9} \\
-\frac{1}{9} & \frac{2}{9}
\end{array}\right)\binom{1}{2} \\
X & =\binom{\frac{2}{9}+\frac{10}{9}}{-\frac{1}{9}+\frac{4}{9}} \\
\binom{x}{y} & =\binom{\frac{4}{3}}{\frac{1}{3}} .
\end{aligned}
$$

Hence, the solution of our system is $X=\left(\begin{array}{ll}\frac{4}{3} & \frac{1}{3}\end{array}\right)^{T}$.
Example 10 Let us consider the system of 3 linear equations in 3 variables

$$
\left\{\begin{aligned}
x+2 y-z & =1 \\
2 x+3 y-5 z & =2 \\
4 x+y+z & =-1
\end{aligned}\right.
$$

We can represent the system of linear equations using the matrix equation

$$
A X=B
$$

where

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & -5 \\
4 & 1 & 1
\end{array}\right), \quad X=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
$$

From Example 6 we know that A is invertible and that its inverse is the matrix

$$
A^{-1}=\frac{1}{26}\left(\begin{array}{ccc}
-8 & 3 & 7 \\
22 & -5 & -3 \\
10 & -7 & 1
\end{array}\right)
$$

Then the unique solution of the system is

$$
X=A^{-1} B=\frac{1}{26}\left(\begin{array}{ccc}
-8 & 3 & 7 \\
22 & -5 & -3 \\
10 & -7 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\frac{1}{26}\left(\begin{array}{c}
-9 \\
15 \\
-5
\end{array}\right)
$$

that is, we have

$$
x=-\frac{9}{26}, \quad y=\frac{15}{26} \quad \text { and } \quad z=-\frac{5}{26} .
$$

