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In this lecture, as well as in the following ones, we will consider matrices
over R. However most of the results can be generalized using any field (like Q
or C).

1 The Matrix Inverse algorithm
In Lecture 3 we defined the inverse of a square matrix A as the matrix B such
that

AB = I and BA = I,

where B has the same size of A and I is the identity matrix.

Example 1 Let us consider the matrix

A =

(
−1 −1
1 0

)
∈M2,2 (R) .
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Let us prove that the inverse of A is its square A2. Indeed, the matrix A2 is
given by

A2 =

(
−1 −1
1 0

)(
−1 −1
1 0

)
=

(
0 1
−1 −1

)
,

while the matrix A3 is

A3 = A2A =

(
0 1
−1 −1

)(
−1 −1
1 0

)
=

(
1 0
0 1

)
= I.

Thus AA2 = A3 = I and A2A = A3 = I, which prove the claim.

Finding the inverse of a given square matrix, when this exists, is not generally
a trivial task. In the following example we show how to use the tools from the
previous lectures in order to find the inverse of a matrix.

Example 2 Let us consider the 2× 2 matrix

A =

(
2 −5
1 2

)
and let us suppose that its inverse exists and has the form

B =

(
x1 x2

x3 x4

)
for certains x1, x2, x3, x4 ∈ R.

Since BA = I, we have(
x1 x2

x3 x4

)(
2 −5
1 2

)
=

(
2x1 + x2 −5x1 + 2x2

2x3 + x4 −5x3 + 2x4

)
=

(
1 0
0 1

)
,

which is equivalent to the system of four linear equations in four variables
2x1 + x2 = 1

−5x1 + 2x2 = 0
2x3 + x4 = 0

−5x3 + 2x4 = 1

. (1)

Using the Gaussian algorithm on the augmented matrix of the system (1), we
can find the equivalent matrix in reduced row-echelon form as follows:

2 1 0 0 1
−5 −2 0 0 0
0 0 2 1 0
0 0 −5 2 1

 ii)−−−−−−−→
R1 → 1

2R1


1 1

2 0 0 1
2

−5 2 0 0 0
0 0 2 1 0
0 0 −5 2 1



iii)−−−−−−−−−−→
R2 → R2 + 5R1


1 1

2 0 0 1
2

0 9
2 0 0 5

2
0 0 2 1 0
0 0 −5 2 1


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ii)−−−−−−−→
R2 → 2

9R2


1 1

2 0 0 1
2

0 1 0 0 5
9

0 0 2 1 0
0 0 −5 2 1


iii)−−−−−−−−−−→

R1 → R1 − 1
2R2


1 0 0 0 2

9
0 1 0 0 5

9
0 0 2 1 0
0 0 −5 2 1


ii)−−−−−−−→

R3 → 1
2R3


1 0 0 0 2

9
0 1 0 0 5

9
0 0 1 1

2 0
0 0 −5 2 1


iii)−−−−−−−−−−→

R4 → R4 + 5R3


1 0 0 0 2

9
0 1 0 0 5

9
0 0 1 1

2 0
0 0 0 9

2 1


ii)−−−−−−−→

R4 → 2
9R4


1 0 0 0 2

9
0 1 0 0 5

9
0 0 1 1

2 0
0 0 0 1 2

9


iii)−−−−−−−−−−→

R3 → R3 − 1
2R4


1 0 0 0 2

2
0 1 0 0 5

9
0 0 1 0 − 1

9
0 0 0 1 2

9

 .

Thus we get the solution

X =
(
x1 x2 x3 x4

)T
=
(

2
9

5
9 − 1

9
2
9

)T
.

One can check that considering the system of linear equations associated to the
matrix equation

AB =

(
2 −5
1 2

)(
x1 x2

x3 x4

)
=

(
2x1 − 5x3 2x2 − 5x4

x1 + 2x3 x2 + 2x4

)
=

(
1 0
0 1

)
= I

one find the same solution (Exercise).
The (unique) inverse of A is thus the matrix

B =

(
2
9

5
9

− 1
9

2
9

)
=

1

9

(
2 5
−1 2

)
∈M2,2 (R) .

The following result gives us a method to compute the inverse of an invertible
matrix using the Gaussian Algorithm.
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Theorem 3 (Matrix Inverse Algorithm) Let A be a square matrix. If there
exists a sequence of elementary row operations that carry A → I, then A is
invertible and this same sequence carries I → A−1. Thus, applying the same
sequence of row operations on the matrix

(
A I

)
, one has the reduction(

A I
)
→
(
I A−1

)
.

Example 4 Let A be the matrix defined in Example 2. The reduction to the
reduced row-echelon form of the matrix

(
A I

)
is the following(

2 −5 1 0
1 2 0 1

)
i)−−−−−−→

R1 ↔ R2

(
1 2 0 1
2 −5 1 0

)
iii)−−−−−−−−−−→

R2 → R2 − 2R1

(
1 2 0 1
0 −9 1 −2

)
ii)−−−−−−−−→

R2 → − 1
9R2

(
1 2 0 1
0 1 − 1

9
2
9

)
iii)−−−−−−−−−−→

R1 → R1 − 2R2

(
1 0 2

9
5
9

0 1 − 1
9

2
9

)

Thus the inverse of the matrix
(

2 −5
1 2

)
is the matrix

(
2
9

5
9

− 1
9

2
9

)
(that is con-

sistent with what we have seen in Example 2).

Using Theorem 3 we can find a formula to the inverse of an invertible 2× 2-
matrix.

Example 5 Let us consider the 2× 2-matrix

A =

(
a b
c d

)
with a, b, c, d ∈ R and ad − bc 6= 0. Then A is invertible and its inverse is the
matrix

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Indeed, by using the algorithm described in Theorem 3 we have the reduction
(Exercise) (

a b 1 0
c d 0 1

)
−→

(
1 0 d

∆ − b
∆

0 1 − c
∆

a
∆

)
where ∆ = ad− bc is called the determinant of A. We also call the matrix(

d −b
−c a

)
the adjoint of A (we will discuss more about determinants and adjoints later).
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To double check we can also verify that

AA−1 =

(
a b
c d

)
· 1
ad−bc

(
d −b
−c a

)
= 1

ad−bc

(
a b
c d

)(
d −b
−c a

)
= 1

ad−bc

(
ad− bc 0

0 −cb + ad

)
= I

and
A−1A = 1

ad−bc

(
d −b
−c a

)
·
(
a b
c d

)
= 1

ad−bc

(
ad− bc 0

0 −bc + ad

)
= I.

Example 6 Let us consider the matrix

A =

1 2 −1
2 3 −5
4 1 1

 .

Using the matrix inverse algorithm we can show that (Exercise) the inverse of
A is the matrix

B =
1

26

−8 3 7
22 −5 −3
10 −7 1

 .

To make sure that the answer is right it is enough to verify that AB = I and
BA = I.

If a matrix A is not invertible, then no sequence of row operations can carry
A→ I. Hence the algorithm breaks down because a row of zeros is encountered.

Example 7 The matrix

A =

1 2 −1
2 3 3
4 7 1


has no inverse. Indeed, let us try the matrix inverse algorithm on A.1 2 −1 1 0 0

2 3 3 0 1 0
4 7 1 0 0 1

 iii)−−−−−−−−−−−−→
R2 → R2 − 2R1

R3 → R3 − 4R1

1 2 −1 1 0 0
0 −1 5 −2 1 0
0 −1 5 −4 0 1



ii)−−−−−−−−−→
R2 → −R2

1 2 −1 1 0 0
0 1 −5 2 −1 0
0 −1 5 −4 0 1


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iii)−−−−−−−−−−−−→
R1 → R1 − 2R2

R3 → R3 + R2

1 0 9 −3 2 0
0 1 −5 2 −1 0
0 0 0 −2 −1 1

 .

Since A will never be transformed to the identity matrix by elementary row
operations, A is not invertible.

2 Inverses and systems of linear equations
As we have seen in Lecture 5, some systems of linear equations have a unique
solution. Here we show how to find such a solution.

Theorem 8 Let us consider a system of n linear equations in n variables and
let us suppose that we can write this system in matrix form as

AX = B.

If the n-square matrix A is invertible, the system has the unique solution

X = A−1B.

Proof. Note that, since the system of linear equations has n equations and n
variables, then A has size n×n. Since A−1 is well defined, and A−1 and B have
size respectively n × n and n × 1, then X is also well defined and it has size
n× 1. Thus the system has at least one solution, namely X.

Moreover, since A is invertible, then we can use the matrix inverse algorithm
to reduce the matrix

(
A In

)
to
(
In A−1

)
. Using the same sequence of row

operations we can thus reduce
A→ In,

which implies that rank (A) = rank (In) = n. Thus, from what we have seen in
Lecture 5, the solution X is unique.

Example 9 Let us consider the system of linear equations{
2x− 5y = 1
x + 2y = 2

.

This system of linear equations corresponds to the matrix equation

AX = B (2)

where
A =

(
2 −5
1 2

)
, X =

(
x
y

)
and B =

(
1
2

)
.

From Example 2 we know that A is invertible and that its inverse is

A−1 =

(
2
9

5
9

− 1
9

2
9

)
.
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Thus. multiplying both sides of Equation 2 by A−1 we obtain

A−1AX = A−1B

IX =

(
2
9

5
9

− 1
9

2
9

)(
1
2

)
X =

(
2
9 + 10

9
− 1

9 + 4
9

)
(
x
y

)
=

(
4
3
1
3

)
.

Hence, the solution of our system is X =
(

4
3

1
3

)T .
Example 10 Let us consider the system of 3 linear equations in 3 variables x + 2y − z = 1

2x + 3y − 5z = 2
4x + y + z = −1

.

We can represent the system of linear equations using the matrix equation

AX = B

where

A =

1 2 −1
2 3 −5
4 1 1

 , X =

x
y
z

 and B =

 1
2
−1

 .

From Example 6 we know that A is invertible and that its inverse is the matrix

A−1 =
1

26

−8 3 7
22 −5 −3
10 −7 1


Then the unique solution of the system is

X = A−1B =
1

26

−8 3 7
22 −5 −3
10 −7 1

 1
2
−1

 =
1

26

−9
15
−5

 ,

that is, we have

x = − 9

26
, y =

15

26
and z = − 5

26
.

7


