Linear Algebra with Application (LAWA 2021)

 Lecture 8

 Lecture 8}

April 7, 2021

As in the previous lecture, let us consider matrices over \mathbb{R}.

1 Conditions for invertibility

The following result (given without proof) summarizes the relation between an invertible matrix and the associated system of linear equations.

Theorem 1 Let A be a n-square matrix. The following conditions are equivalent:

1. The matrix A is invertible.
2. There exists a matrix C such that $A C=I$.
3. The matrix A can be carried to the identity matrix I by elementary row operations.
4. The system $A X=B$ has a solution for every choice of a column B.
5. The homogeneous system $A X=O$ has only the trivial solution $X_{=}=O$.

Some of the equivalence in the previous theorem can be proved by using the definition of inverse and the results in Lectures 6 and 7.

We can also give an extra result, without proof, for invertible matrices.
Theorem 2 Let A, C be two square matrices. If $A C=I$ then $C A=I$ also. Moreover, in this case, A and C are both invertible, $C=A^{-1}$ and $A=C^{-1}$

Using the previous theorem we can show that the only invertible matrices are square matrices. That is, if A is an $m \times n$ matrix, and $A C=I_{m}$ and $C A=I_{n}$ hold for some $n \times m$ matrix C, then $m=n$.

This is false if A and C are not square matrices.
Example 3 Let us consider the two non-square matrices

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right)
$$

One has

$$
A C=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
$$

but

$$
C A=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \neq I_{3}
$$

Example 4 Let A, B be two square matrices and let us suppose that $A^{3}=B$ and that B is invertible. Then, using Theorem 2, we can prove that A is invertible too (Exercise).

2 Elementary matrices

In Lecture 4 we defined the three types of elementary row operations on a matrix. Similary, we call elementary column operations on a matrix the following operations:
i) interchange two columns;
ii) multiply one of the columns by a nonzero number;
iii) add a multiple of one column to a different column.

Example 5 Let us consider the same matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
1 & -1 & 1 & 0
\end{array}\right)
$$

The three matrices

$$
\left(\begin{array}{cccc}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & -1
\end{array}\right), \quad\left(\begin{array}{cccc}
5 & 1 & 1 & 2 \\
5 & -1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
1 & -1 & 0 & 0
\end{array}\right)
$$

are obtained from A using respectively an elementary row operation of type i) (interchanging column 2 with column 4), type $i i$) (multiplying the first column by 5), and type $i i i$) (adding the second column to the third one).

A square matrix E obtained by doing a single elementary row operation or a single elementary column operation to the identity matrix I is called an elementary matrix.

We say that E is of type i), $i i$) or $i i i$) when the correspoding row or column operation is of type i), $i i$) or $i i i$).

Example 6 The matrices

$$
E_{1}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad E_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)
$$

are elementary matrices of type i,,$i i$) and $i i i)$ respectively, obtained by performing the following row operations on the 3×3 identity matrix I_{3} :

$$
I \xrightarrow[R_{1} \leftrightarrow R_{3}]{i)} E_{1}, \quad I \xrightarrow[R_{2} \rightarrow \frac{1}{3} R_{2}]{i i)} E_{2} \quad \text { and } \quad I \xrightarrow[R_{3} \rightarrow R_{3}-2 R_{1}]{i i i)} E_{3} .
$$

Theorem 7 Every elementary matrix E is invertible, and E^{-1} is the elementary matrix (of the same type of E) obtained from I by the inverse of the operation that produces E from I.

Example 8 Let us consider the three elementary matrices E_{1}, E_{2} and E_{3} seen in Example 6. Then we can find their inverses E_{1}^{-1}, E_{2}^{-1} and E_{3}^{-1} (Exercise).

The left multiplication by an elementary matrix of a certain type is equivalent to a corresponding elementary row operation of the same type.

Example 9 Let us consider the matrix

$$
A=\left(\begin{array}{cccc}
2 & 2 & 2 & 0 \\
0 & 3 & -2 & 0 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Interchanging the 1-row and the 3-row (elementary row operation of type i) can be performed by multiplying A by the matrix E_{1} in Example 6. Indeed

$$
E_{1} A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
2 & 2 & 2 & 0 \\
0 & 3 & -2 & 0 \\
1 & 1 & 1 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 3 & -2 & 0 \\
2 & 2 & 2 & 0
\end{array}\right)
$$

Subtracting 2 times the 1-row from the 3-row in the previous matrix (elementary row operation of type $i i i)$) can be done by multiplying $E_{1} A$ by the matrix E_{3} in Example 6. Indeed

$$
E_{3}\left(E_{1} A\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 3 & -2 & 0 \\
2 & 2 & 2 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 3 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Multiplying the 2-row by $\frac{1}{3}$ in the previous matrix can be done by left multiplication by the matrix E_{2} in Example 6. Indeed

$$
E_{2}\left(E_{3} E_{1} A\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 3 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Thus we can get an equivalent matrix to A in row echelon form by multiplying on the left by $\left(E_{2} E_{3} E_{1}\right)$. We can also obtain a reduced row-echelon form of A by left multiplying $E_{2} E_{3} E_{1} A$ by the elementary matrix of type iii)

$$
E_{4}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

indeed

$$
E_{4} E_{2} E_{3} E_{1} A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \frac{5}{3} & 0 \\
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Similarly, the right multiplication by an elementary matrix of a certain type is equivalent to a correspoding elementary column operation of the same type.

Example 10 Let us consider the matrix

$$
A=\left(\begin{array}{ccc}
5 & 0 & 1 \\
0 & 2 & -1
\end{array}\right)
$$

Interchanging the first column with the third column (elementary column operation of type i) corresponds to multiply A on the right with the matrix E_{1} of Example 6. Indeed

$$
A E_{1}=\left(\begin{array}{ccc}
5 & 0 & 1 \\
0 & 2 & -1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 5 \\
-1 & 2 & 0
\end{array}\right)
$$

Subtracting 5 times the 1 -column from the 3 -column in the previous matrix (elementary operation of type $i i i$)) can be performed by right multiplication by the elmentary matrix of type $i i i$)

$$
E_{5}=\left(\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Indeed

$$
\left(A E_{1}\right) E_{5}=\left(\begin{array}{ccc}
1 & 0 & 5 \\
-1 & 2 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 5
\end{array}\right) .
$$

Multiplying the 2 -column of the previous matrix by $\frac{1}{2}$ is done by right multiplying $A E_{1} E_{5}$ by the elementary matrix of type $\left.i i\right)$

$$
E_{6}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Indeed

$$
\left(A E_{1} E_{5}\right) E_{6}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 5
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 5
\end{array}\right)
$$

By right multiplying $A E_{1} E_{5} E_{6}$ by the elmentary matrices of type iii)

$$
E_{7}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad E_{8}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -5 \\
0 & 0 & 1
\end{array}\right)
$$

we obtain the matrix

$$
\begin{aligned}
\left(A E_{1} E_{5} E_{6}\right) E_{7} E_{8} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 5
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) E_{8} \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 5
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -5 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

This matrix is called a reduced column-echelon form of A. Its transposition

$$
\left(A E_{1} E_{5} E_{6} E_{7} E_{8}\right)^{T}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

is in reduced row-echelon form.

The previous examples can be generalized in the following result.
Theorem 11 Let us consider two matrices A, B and let us suppose that there exists a series of row operations carrying $A \rightarrow B$. Then

1. There exists an invertible matrix U such that $B=U A$.
2. U can be constructed by performing the same row operations carrying A to B on the double matrix $\left(\begin{array}{ll}A & I\end{array}\right)$, that is

$$
\left(\begin{array}{ll}
A & I
\end{array}\right) \longrightarrow\left(\begin{array}{ll}
B & U
\end{array}\right)
$$

3. $U=E_{k} \cdots E_{2} E_{1}$, where $E_{1}, E_{2}, \ldots, E_{k}$ are the elementary matrices corresponding in order to the row operations carrying A to B.

Example 12 Let us consider the matrix

$$
A=\left(\begin{array}{cccc}
2 & 2 & 2 & 0 \\
0 & 3 & -2 & 0 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

seen in Example 9. We have seen that this matrix can be carried to the matrix

$$
B=\left(\begin{array}{cccc}
1 & 0 & \frac{5}{3} & 0 \\
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

by a series of elementary row operations, and that $B=U A$ where

$$
U=E_{4} E_{2} E_{3} E_{1}
$$

is an invertible matrix with E_{1}, E_{2}, E_{2} and E_{4} elementary row matrices.
Example 13 Let us consider the matrix

$$
A=\left(\begin{array}{lll}
3 & -2 & 5 \\
1 & -1 & 0
\end{array}\right)
$$

Using Theorem 11 we can find an invertible matrix U (with its decomposition in elementary matrices) and a matrix B in reduced row-echelon form such that $B=U A$ (Exercise).

