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As in the previous lecture, let us consider matrices over R.

1 Conditions for invertibility
The following result (given without proof) summarizes the relation between an
invertible matrix and the associated system of linear equations.

Theorem 1 Let A be a n-square matrix. The following conditions are equiva-
lent:

1. The matrix A is invertible.

2. There exists a matrix C such that AC = I.

3. The matrix A can be carried to the identity matrix I by elementary row
operations.

4. The system AX = B has a solution for every choice of a column B.
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5. The homogeneous system AX = O has only the trivial solution X= = O.

Some of the equivalence in the previous theorem can be proved by using the
definition of inverse and the results in Lectures 6 and 7.

We can also give an extra result, without proof, for invertible matrices.

Theorem 2 Let A,C be two square matrices. If AC = I then CA = I also.
Moreover, in this case, A and C are both invertible, C = A−1 and A = C−1

Using the previous theorem we can show that the only invertible matrices are
square matrices. That is, if A is an m× n matrix, and AC = Im and CA = In
hold for some n×m matrix C, then m = n.

This is false if A and C are not square matrices.

Example 3 Let us consider the two non-square matrices

A =

(
1 2 1
1 1 1

)
and C =

−1 1
1 −1
0 1

 .

One has

AC =

(
1 2 1
1 1 1

)−1 1
1 −1
0 1

 =

(
1 0
0 1

)
= I2

but

CA =

−1 1
1 −1
0 1

(1 2 1
1 1 1

)
=

0 −1 0
0 1 0
1 1 1

 6= I3.

Example 4 Let A,B be two square matrices and let us suppose that A3 = B
and that B is invertible. Then, using Theorem 2, we can prove that A is
invertible too (Exercise).

2 Elementary matrices
In Lecture 4 we defined the three types of elementary row operations on a ma-
trix. Similary, we call elementary column operations on a matrix the following
operations:

i) interchange two columns;

ii) multiply one of the columns by a nonzero number;

iii) add a multiple of one column to a different column.
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Example 5 Let us consider the same matrix

A =

(
1 1 1 2
1 −1 1 0

)
.

The three matrices(
1 2 1 1
1 0 1 −1

)
,

(
5 1 1 2
5 −1 1 0

)
,

(
1 1 0 2
1 −1 0 0

)
are obtained from A using respectively an elementary row operation of type i)
(interchanging column 2 with column 4), type ii) (multiplying the first column
by 5), and type iii) (adding the second column to the third one).

A square matrix E obtained by doing a single elementary row operation
or a single elementary column operation to the identity matrix I is called an
elementary matrix.

We say that E is of type i), ii) or iii) when the correspoding row or column
operation is of type i), ii) or iii).

Example 6 The matrices

E1 =

0 0 1
0 1 0
1 0 0

 , E2 =

1 0 0
0 1

3 0
0 0 1

 and E3 =

 1 0 0
0 1 0
−2 0 1


are elementary matrices of type i), ii) and iii) respectively, obtained by per-
forming the following row operations on the 3× 3 identity matrix I3:

I
i)−−−−−−→

R1 ↔ R3

E1, I
ii)−−−−−−−→

R2 → 1
3R2

E2 and I
iii)−−−−−−−−−−→

R3 → R3 − 2R1

E3.

Theorem 7 Every elementary matrix E is invertible, and E−1 is the elemen-
tary matrix (of the same type of E) obtained from I by the inverse of the oper-
ation that produces E from I.

Example 8 Let us consider the three elementary matrices E1, E2 and E3 seen
in Example 6. Then we can find their inverses E−11 , E−12 and E−13 (Exercise).

The left multiplication by an elementary matrix of a certain type is equiva-
lent to a corresponding elementary row operation of the same type.

Example 9 Let us consider the matrix

A =

2 2 2 0
0 3 −2 0
1 1 1 0

 .
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Interchanging the 1-row and the 3-row (elementary row operation of type i))
can be performed by multiplying A by the matrix E1 in Example 6. Indeed

E1A =

0 0 1
0 1 0
1 0 0

2 2 2 0
0 3 −2 0
1 1 1 0

 =

1 1 1 0
0 3 −2 0
2 2 2 0

 .

Subtracting 2 times the 1-row from the 3-row in the previous matrix (elementary
row operation of type iii)) can be done by multiplying E1A by the matrix E3

in Example 6. Indeed

E3(E1A) =

 1 0 0
0 1 0
−2 0 1

1 1 1 0
0 3 −2 0
2 2 2 0

 =

1 1 1 0
0 3 −2 0
0 0 0 0

 .

Multiplying the 2-row by 1
3 in the previous matrix can be done by left multipli-

cation by the matrix E2 in Example 6. Indeed

E2(E3E1A) =

1 0 0
0 1

3 0
0 0 1

1 1 1 0
0 3 −2 0
0 0 0 0

 =

1 1 1 0
0 1 − 2

3 0
0 0 0 0

 .

Thus we can get an equivalent matrix to A in row echelon form by multiplying
on the left by (E2E3E1). We can also obtain a reduced row-echelon form of A
by left multiplying E2E3E1A by the elementary matrix of type iii)

E4 =

1 −1 0
0 1 0
0 0 1

 ,

indeed

E4E2E3E1A =

1 −1 0
0 1 0
0 0 1

1 1 1 0
0 1 − 2

3 0
0 0 0 0

 =

1 0 5
3 0

0 1 − 2
3 0

0 0 0 0

 .

Similarly, the right multiplication by an elementary matrix of a certain type
is equivalent to a correspoding elementary column operation of the same type.

Example 10 Let us consider the matrix

A =

(
5 0 1
0 2 −1

)
.

Interchanging the first column with the third column (elementary column op-
eration of type i) corresponds to multiply A on the right with the matrix E1 of
Example 6. Indeed

AE1 =

(
5 0 1
0 2 −1

)0 0 1
0 1 0
1 0 0

 =

(
1 0 5
−1 2 0

)
.
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Subtracting 5 times the 1-column from the 3-column in the previous matrix
(elementary operation of type iii)) can be performed by right multiplication by
the elmentary matrix of type iii)

E5 =

1 0 −5
0 1 0
0 0 1

 .

Indeed

(AE1)E5 =

(
1 0 5
−1 2 0

)1 0 −5
0 1 0
0 0 1

 =

(
1 0 0
−1 2 5

)
.

Multiplying the 2-column of the previous matrix by 1
2 is done by right multi-

plying AE1E5 by the elementary matrix of type ii)

E6 =

1 0 0
0 1

2 0
0 0 1

 .

Indeed

(AE1E5)E6 =

(
1 0 0
−1 2 5

)1 0 0
0 1

2 0
0 0 1

 =

(
1 0 0
−1 1 5

)
.

By right multiplying AE1E5E6 by the elmentary matrices of type iii)

E7 =

1 0 0
1 1 0
0 0 1

 and E8 =

1 0 0
0 1 −5
0 0 1

 ,

we obtain the matrix

(AE1E5E6)E7E8 =

(
1 0 0
−1 1 5

)1 0 0
1 1 0
0 0 1

E8

=

(
1 0 0
0 1 5

)1 0 0
0 1 −5
0 0 1


=

(
1 0 0
0 1 0

)
.

This matrix is called a reduced column-echelon form of A. Its transposition

(AE1E5E6E7E8)
T =

1 0
0 1
0 0


is in reduced row-echelon form.
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The previous examples can be generalized in the following result.

Theorem 11 Let us consider two matrices A,B and let us suppose that there
exists a series of row operations carrying A→ B. Then

1. There exists an invertible matrix U such that B = UA.

2. U can be constructed by performing the same row operations carrying A
to B on the double matrix

(
A I

)
, that is(

A I
)
−→

(
B U

)
.

3. U = Ek · · ·E2E1, where E1, E2, . . . , Ek are the elementary matrices cor-
responding in order to the row operations carrying A to B.

Example 12 Let us consider the matrix

A =

2 2 2 0
0 3 −2 0
1 1 1 0


seen in Example 9. We have seen that this matrix can be carried to the matrix

B =

1 0 5
3 0

0 1 − 2
3 0

0 0 0 0


by a series of elementary row operations, and that B = UA where

U = E4E2E3E1

is an invertible matrix with E1, E2, E2 and E4 elementary row matrices.

Example 13 Let us consider the matrix

A =

(
3 −2 5
1 −1 0

)
.

Using Theorem 11 we can find an invertible matrix U (with its decomposition
in elementary matrices) and a matrix B in reduced row-echelon form such that
B = UA (Exercise).
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