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As in the previous lecture, let us consider matrices over R.

1 Elementary matrices and rank
Combining Theorem 11 of Lecture 9 with Theorem 3 of Lecture 7 we obtain that
the inverse of an invertible matrix can be written as a product of elementary
matrices.

Example 1 Let us consider the invertible matrix

A =

(
2 1
1 −1

)
.
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A possible reduction of A is reduced row-echelon form is the following:(
2 1
1 −1

)
i)−−−−−−→

R1 ↔ R2

(
1 −1
2 1

)
iii)−−−−−−−−−−→

R2 → R2 − 2R1

(
1 −1
0 3

)
ii)−−−−−−−→

R2 → 1
3R2

(
1 −1
0 1

)
iii)−−−−−−−−−→

R1 → R1 + R2

(
1 0
0 1

)
The elementary matrices corresponding to the previous elementary operations
are, in order:

E1 =

(
0 1
1 0

)
, E2 =

(
1 0
−2 1

)
, E3 =

(
1 0
0 1

3

)
and E4 =

(
1 1
0 1

)
.

From Theorem 11 in Lecture 8 we thus have I = A−1A, where

A−1 = E4E3E2E1 =

(
1 1
0 1

)(
1 0
0 1

3

)(
1 0
−2 1

)(
0 1
1 0

)
=

1

3

(
1 1
1 −2

)
.

Note that we can also write A as a product of elementary matrices. Indeed,
since A =

(
A−1

)−1, we have

A = (E4E3E2E1)
−1

= E−11 E−12 E−13 E−14

=

(
0 1
1 0

)(
1 0
2 1

)(
1 0
0 3

)(
1 −1
0 1

)
.

If we combine row operations and column operations, we can get a simpler
form of any matrix.

Theorem 2 Let A ∈ Mm,n (R) be a matrix of rank r. Then there exit two
invertible matrices U ∈Mm,m (R) and V ∈Mn,n (R) such that

UAV =

(
Ir Or,n−r

Om−r,r Om−r,n−r

)

or, for short and when the size is clear from the context,
(
Ir O
O O

)
. Moreover,

the matrices U and V can be computed using the Gaussian Algorithm as follows:(
A Im

)
→
(
R U

)
,

where R is a reduced row-echelon matrix; and

(
RT In

)
→
((

Ir O
O O

)T

V T

)
.
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Proof. [Idea] Let us give an idea of the proof.
First, we use a similar idea as the Matrix Inversion Algorithm. We add

the m × m identity matrix to the right side of A to get the m × (m + n)
matrix

(
A Im

)
. Using the Gaussian algorithm we can perform a sequence of

elementary row operation and obtain
(
R U

)
, where R is a reduced row-echelon

matrix, equivalent to A, and U is the multiplication of the elementary matrices
corresponding to the elementary row operations, according to Theorem 11 in
Lecture 8.

If R is not already in the form
(
Ir O
O O

)
, we consider its transpose RT and

we procede in a similar way. We add the n×n identity matrix to the right side
of RT , and doing a sequence of elementary row operations we obtain a matrix

of the form
((

Ir O
O O

)T

V T

)
. From Theorem 11 in Lecture 8 it follows that

V corresponds to the multiplication of the elementary matrices corresponding
to the elementary column operations.

Since we have that R = UA in the first step of the theorem, then we also
have (always using Theorem 11 in Lecture 8)(

Ir O
O O

)T

= V TRT = V T (UA)T = V TATUT = (UAV )T ,

Recalling that for any matrix B we have (BT )T = B, we can conclude that

UAV =

(
Ir O
O O

)
.

Example 3 Let us consider the matrix

A =

 1 −2 3 1
−1 2 −1 1
2 −4 5 1

 .

Let us use Theorem 2 to show that rank (A) = 2 and that there exist two
matrices U, V such that

UAV =

(
I2 O
O O

)
.

Let us first consider the reduction
(
A I3

)
→
(
R U

)
as in the first step of

Theorem 2. 1 −2 3 1 1 0 0
−1 2 −1 1 0 1 0
2 −4 5 1 0 0 1

 iii)−−−−−−−−−−−−→
R2 → R2 + R1

R3 → R3 − 2R1

1 −2 3 1 1 0 0
0 0 2 2 1 1 0
0 0 −1 −1 −2 0 1



3



ii)−−−−−−−−−→
R2 → 1

2R2

1 −2 3 1 1 0 0
0 0 1 1 1

2
1
2 0

0 0 −1 −1 −2 0 1


iii)−−−−−−−−−−−−→

R1 → R1 − 3R2

R3 → R3 + R2

1 −2 0 −2 − 1
2 − 3

2 0
0 0 1 1 1

2
1
2 0

0 0 0 0 − 3
2

1
2 1

 .

Thus we have

R =

1 −2 0 −2
0 0 1 1
0 0 0 0

 and U =

− 1
2 − 3

2 0
1
2

1
2 0

− 3
2

1
2 1

 .

Note that here the reduced row-echelon matrix R has a unique form, while U
may have different forms.

Moreover, since R has two leadings ones, we have rank (A) = rank (R) = 2.
Using the second step of Theorem 2, that is the reduction of

(
RT I4

)
, we

obtain:
1 0 0 1 0 0 0
−2 0 0 0 1 0 0
0 1 0 0 0 1 0
−2 1 0 0 0 0 1

 iii)−−−−−−−−−−−−→
R2 → R2 + 2R1

R4 → R4 + 2R1


1 0 0 1 0 0 0
0 0 0 2 1 0 0
0 1 0 0 0 1 0
0 1 0 2 0 0 1



i)−−−−−−−→
R2 ↔ R3


1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 2 1 0 0
0 1 0 2 0 0 1


iii)−−−−−−−−−−−→

R4 → R4 − R1


1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 2 1 0 0
0 0 0 2 0 −1 1

 .

=

((
I2 O2,1

O2,2 O2,1

)
V T

)
.

where

V =


1 0 2 2
0 0 1 0
0 1 0 −1
0 0 0 1

 .

Note that the reduced row-echelon matrix
(

I2 O2,1

O2,2 O2,1

)
equivalent to R has a

unique form, while V may have different forms.
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Finally, one can check that we actually have− 1
2 − 3

2 0
1
2

1
2 0

− 3
2

1
2 1

 1 −2 3 1
−1 2 −1 1
2 −4 5 1



1 0 2 2
0 0 1 0
0 1 0 −1
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 0 0

 ,

that is
UAV =

(
I2 O2,2

O1,2 O1,2

)
.

Example 4 Following the previous example, let us show that given the matrix

A =

(
3 −3 6
1 −1 1

)
we can write

UAV =

(
1 0 0
0 1 0

)
for two invertible matrices U, V (Exercise).

2 Determinant
In Lecture 7 we defined the determinant of a generic 2× 2-matrix

A =

(
a b
c d

)
as

det (A) = det

(
a b
c d

)
= ad− bc.

In this lecture we define the determinant of a generic square matrix and we
show how to compute it.

To define the determinant, we give a recursive definition, that is we give
a definition for a base case, here for a 1 × 1-matrix, and then we define the
determinant of a n × n-matrix using the determinant of a (n − 1) × (n − 1)-
matrix.

• Let A =
(
a
)
∈M1,1 (R). Then det (A) = a.

• Let A =
(
aij
)
∈Mn,n (R). Then

det (A) = a11C11(A) + a12C12(A) + · · ·+ a1nC1n(A) (1)

where Cij(A) is called the (i, j)-cofactor of A and it is defined as

Cij(A) = (−1)i+jdet (Aij) ,

for each i and j, where Aij is the (n− 1)× (n− 1)-matrix obtained from
A by delating the i-row and the j-column. We also call (−1)i+j the sign
of the (i, j)-position in A.
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Equation (1) is called the Laplace expansion, or cofactor expansion, of A
along the 1-row.

Example 5 The definition of determinant is consistent for 2× 2-matrices. In-
deed we have

det

(
a b
c d

)
= a · (−1)1+1 det (d) + b · (−1)1+2 det (c) = ad− bc.

Example 6 Let us find the determinant of a generic 3× 3-matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Using Equation (1) we have

detA = a11C11(A) + a12C12(A) + a13C13(A).

From the definition of cofactor, it follows that

C11(A) = (−1)1+1det (A11) = (−1)2 det
(
a22 a23
a32 a33

)
= a22a33 − a23a32,

C12(A) = (−1)1+2det (A12) = (−1)3 det
(
a21 a23
a31 a33

)
= −(a21a33 − a23a31),

C13(A) = (−1)1+3det (A13) = (−1)4 det
(
a21 a22
a31 a32

)
= a21a32 − a22a31.

Thus, we have

detA = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

Example 7 Following the previous example we can find the determinant of the
matrix

A =

 1 −2 0
−1 1 2
5 0 3


(Exercise).

When we have a lot of zeros, especially in the first row, the computation is
easier.

Example 8 Let us compute the determinant of the matrix

A =


0 a12 0 0
a21 0 0 0
0 0 a33 0
0 0 0 a44

 .
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By definition we have

det (A) = a12(−1)1+2 det

a21 0 0
0 a33 0
0 0 a44

.

Let us now consider the 3× 3-matrix

B =

a21 0 0
0 a33 0
0 0 a44


Its determinant is given by

det (B) = a21(−1)1+1 det

(
a33 0
0 a44

)
= a21 · 1 · (a33a44) = a21a33a44.

Thus, we finally have

detA = a12 · (−1) · (a21a33a44) = −a12a21a33a44.

In the definition of determinant we considered the cofactor expansion along
the first row. The following important result show us that we can compute it
in a different way.

Theorem 9 (Laplace Expansion Theorem) Let A be a square matrix. The
determinant of A is equal to the cofactor expension along any row or along any
column of A.

Example 10 Let us consider the matrix

A =


2 −1 0 3
1 0 5 7
7 9 0 2
4 0 0 8

 .

A smart way to compute det (A) using a cofactor expansion along the rows and
the column having the bigger number of zeros. Let us thus start by doing the
cofactor expansion along the 4-row.

det (A) = 4 · (−1)4+1 det

−1 0 3
0 5 7
9 0 2

+ 0 · (−1)4+2 det

2 0 3
1 5 7
7 0 2


+0 · (−1)4+3 det

2 −1 3
1 0 7
7 9 2

+ 8 · (−1)4+4 det

2 −1 0
1 0 5
7 9 0


= −4 det

−1 0 3
0 5 7
9 0 2

+ 8det

2 −1 0
1 0 5
7 9 0

.
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Applying the cofactor expansion along the 2-column of the first matrix and
along the 3-column of the second matrix we obtain respectively:

det

−1 0 3
0 5 7
9 0 2

 = 5 · (−1)2+2 det

(
−1 3
9 2

)
= 5(−2− 27) = −145

and

det

2 −1 0
1 0 5
7 9 0

 = 5 · (−1)2+3 det

(
2 −1
7 9

)
= −5(18 + 7) = −125.

Thus
det (A) = −4 · (−145) + 8 · (−125) = −420.

The following results easily follows from Theorem 9

Corollary 11 If a square matrix A has a row or a column of zeros, then
det (A) = 0.

Example 12 Let us consider the matrix

A =

1 2 3
0 0 0
1 −1 1

 .

Then, using the cofactor expansion along the second row, we find

det (A) = −0 · det
(

2 3
−1 1

)
+ 0 · det

(
1 3
1 1

)
− 0 · det

(
1 2
1 −1

)
= 0.
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