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As in the previous lecture, let us consider matrices over R.

1 Elementary matrices and rank

Combining Theorem 11 of Lecture 9 with Theorem 3 of Lecture 7 we obtain that
the inverse of an invertible matrix can be written as a product of elementary
matrices.

Example 1 Let us consider the invertible matrix

()



A possible reduction of A is reduced row-echelon form is the following:

(2 1 ) i) 1 -1
1 -1 Ry +» R2 2 1
iid) 1 -1

Ry — Ry — 2R, 0o 3

ii) 1 -1

0 1

iii) 1 0
_
Ry — Ry + R2 0 1

The elementary matrices corresponding to the previous elementary operations
are, in order:

0 1 1 0 1 0 1 1
=) s (B ) B ) me = ()
From Theorem 11 in Lecture 8 we thus have I = A~'A, where

L /1 1\ (1 0\[/1 Oy[0 1\ 1(1 1
A _E4E3E2E1—<0 1> (0 é) <_2 1> (1 O>_3 1 =2)

Note that we can also write A as a product of elementary matrices. Indeed,
since A = (A_l)_l, we have

A

(E4BsE2Ey) ' = ETVE; ' BT VE
. 0 1 1 0 1 0 1 -1
o 1 0 2 1 0 3 0 1
If we combine row operations and column operations, we can get a simpler
form of any matrix.

Theorem 2 Let A € M,, ., (R) be a matriz of rank r. Then there exit two
invertible matrices U € My, m (R) and V € M,, ,, (R) such that

UAV — ( IT‘ O'I",’IL—T' )

Om—T,'f‘ Om—r,n—r

I, O
O O

the matrices U and V' can be computed using the Gaussian Algorithm as follows:

or, for short and when the size is clear from the context, . Moreover,

(A In,)— (R U),

where R is a reduced row-echelon matriz; and

(RT ]n)—><<10’“ g)T VT).



Proof. [Idea| Let us give an idea of the proof.

First, we use a similar idea as the Matrix Inversion Algorithm. We add
the m x m identity matrix to the right side of A to get the m x (m + n)
matrix (A Im). Using the Gaussian algorithm we can perform a sequence of
elementary row operation and obtain (R U ), where R is a reduced row-echelon
matrix, equivalent to A, and U is the multiplication of the elementary matrices
corresponding to the elementary row operations, according to Theorem 11 in
Lecture 8.

I, O
O O
we procede in a similar way. We add the n x n identity matrix to the right side
of R, and doing a sequence of elementary row operations we obtain a matrix

I, O
f the fi r
of the form ((O 0

V' corresponds to the multiplication of the elementary matrices corresponding
to the elementary column operations.

Since we have that R = UA in the first step of the theorem, then we also
have (always using Theorem 11 in Lecture 8)

If R is not already in the form < , we consider its transpose RT and

T
VT). From Theorem 11 in Lecture 8 it follows that

T
(Ié g) =VTRT =vT(WwA)T =vTATUT = (UAV)T,

Recalling that for any matrix B we have (BT)? = B, we can conclude that

I, O
oav= (5 9).

Example 3 Let us consider the matrix

1 -2 3 1
A=1-1 2 -1 1
2 -4 5 1

Let us use Theorem 2 to show that rank (A) = 2 and that there exist two

matrices U, V such that
(I O
oav (5 9).

Let us first consider the reduction (A I3) — (R U) as in the first step of
Theorem 2.

1 -2 3 1 100 1 -2 3 1
1 2 11 o1o0] —™m (o 0 2 2
2 —4 5 1 0 0 1 Ry = Ro + Ry 0o 0 -1 -1

R3z — Rz — 2R;



i)

- 0
R2*>%R2 0
i)
Ri1 — R1 — 3R>
Rz — Rz + R2
Thus we have

1 -2 0 -2 -1
R=(0 0 1 1 and U=|[ ¢
00 0 0 -3

Note that here the reduced row-echelon matrix R has a unique form, while U

may have different forms.

Moreover, since R has two leadings ones, we have rank (A) = rank (R) = 2.
Using the second step of Theorem 2, that is the reduction of (RT I), we

obtain:
1 0 0 1 0 0 O 1
-2 0 0 01 0 O iid) 0
0 1 0 0 0 1 0 Ry — R+ 2R4 0
-2 1 0 0 0 0 1 Ra —» Ra + 2R, 0
1 0
i) 0 1
— 0 0
Ro < R3
0 1
1
ii4) 0
R4*>R47R1 0
0
(G
02,2
where
1 0 2 2
0 01 O
V= 01 0 -1
0 0 0 1
Note that the reduced row-echelon matrix ( L O
O22 02

unique form, while V' may have different forms.

= -0 O

o O o o

oS O = O

021

)

021

)

0 1
0 2
0 0
0 2
1 0
0 0
2 1
2 0
0 1
0 0
0 2
0 2

o o= O

oo = O

o= o O

) v).

= o O O o= O O

o = O

_= o O O

= o o O

> equivalent to R has a



Finally, one can check that we actually have

1 2
1 _3 _
3 o3 O\ (12 3 N[5 g T g 1000
-2 3 ) \2 4 5 1)\, 0000
that is

I, O
UAV = <)
(01,2 O1,2>

Example 4 Following the previous example, let us show that given the matrix
3 -3 6
a=(1 30

1 00
UAV_(O 1 O)

for two invertible matrices U,V (Exercise).

we can write

2 Determinant

In Lecture 7 we defined the determinant of a generic 2 x 2-matrix
a b
A= )

det (A) = det (Z Z) = ad — be.
In this lecture we define the determinant of a generic square matrix and we
show how to compute it.
To define the determinant, we give a recursive definition, that is we give
a definition for a base case, here for a 1 x l-matrix, and then we define the
determinant of a n x n-matrix using the determinant of a (n — 1) x (n — 1)-
matrix.

o Let A= (a) € My (R). Then det (A) = a.

as

o Let A = (as;) € Mpn (R). Then
det (A) = a11C11(4) + a12C12(A) + - - + a1, C1n (A4) (1)
where C;;(A) is called the (7, j)-cofactor of A and it is defined as
Cij(A) = (1) det (4y;),

for each ¢ and j, where A;; is the (n — 1) x (n — 1)-matrix obtained from
A by delating the i-row and the j-column. We also call (—1)*/ the sign
of the (i, j)-position in A.



Equation (1) is called the Laplace expansion, or cofactor expansion, of A
along the 1-row.

Example 5 The definition of determinant is consistent for 2 x 2-matrices. In-
deed we have

det (Z Z) =a- (1) det(d) +b-(=1)""?det (c) = ad — be.
Example 6 Let us find the determinant of a generic 3 x 3-matrix

a1 ai2 ais

asz1 asz a3z
Using Equation (1) we have
det A = a11011(A) + a12012(A) + a13013(A).

From the definition of cofactor, it follows that

C11(A) = (=1)"*'det (A11) = (—1) det (a22 a23> = ag2a33 — (23032,
a32 ass

Cr2(A) = (=1)'*?det (A1) = (—1)* det (221 a23) = —(a21a33 — az3az1),
31 @33

Cus(A) = (—1)Fdet (Ars) = (~1)* det ( ) ~ aprazs — azas:.
azy  asz

Thus, we have

detA = 1111(022033 - 023032) - 012(a21a33 - a23a31) + CL13(¢121¢132 - a221131)

= (11022033 — A11023G32 — 012021033 + 12023031 + A13G21A32 — G13A22031 -

Example 7 Following the previous example we can find the determinant of the
matrix

(Exercise).

When we have a lot of zeros, especially in the first row, the computation is
easier.

Example 8 Let us compute the determinant of the matrix

0 a12 0 0

o a1 0 0 0

A= 0 0 ass 0
0 O 0 aqq



By definition we have

a1 0 0
det (A) = CL12(—1)1+2 det 0 ass 0
0 0 Qaq4
Let us now consider the 3 x 3-matrix
asy O 0
B = 0 ass 0
0 0 Q44

Its determinant is given by

a 0
det (B) = ag1(—1)"" det ( 83 a44) = ag1 - 1 (a33044) = a210330G44.

Thus, we finally have
det A = a1z - (—1) - (@21033044) = —A12G21A33044.

In the definition of determinant we considered the cofactor expansion along
the first row. The following important result show us that we can compute it
in a different way.

Theorem 9 (Laplace Expansion Theorem) Let A be a square matriz. The
determinant of A is equal to the cofactor expension along any row or along any

column of A.

Example 10 Let us consider the matrix

o O ot o
0N g W

A smart way to compute det (A) using a cofactor expansion along the rows and
the column having the bigger number of zeros. Let us thus start by doing the
cofactor expansion along the 4-row.

-1 0 3 2 0 3
det(A) = 4-(=D*ldet| 0 5 7| +0-(=1)*2det |1 5 7
9 0 2 7 0 2
2 -1 3 2 -1 0
40 (~1)3det [1 0 7|48 (~1)*det[1 0 5
7T 9 2 79 0
-1 0 3 2 -1 0
= —4det| 0 5 7| +8det|1 0 5
9 0 2 79 0



Applying the cofactor expansion along the 2-column of the first matrix and
along the 3-column of the second matrix we obtain respectively:

-1 0 3 13
det| 0 5 7 :5-(—1)2+2det< ):5(—2—27):-145
9 2
9 0 2
and
2 -1 0 5 1
det |1 0 5] =5-(=1)2"det = —5(184+7) = —125.
79
790 0
Thus

det (A) = —4 - (—145) + 8 - (—125) = —420.

The following results easily follows from Theorem 9

Corollary 11 If a square matrix A has a row or a column of zeros, then
det(A) = 0.

Example 12 Let us consider the matrix
1 2 3

A=(0 0 O

-1 1

—

Then, using the cofactor expansion along the second row, we find

det(A):—O-det(Q1 ?)+O~det<} ?)—O~det<1 21)20.



