Linear Algebra with Application (LAWA 2021)

 Lecture 9

 Lecture 9}

April 14, 2021

As in the previous lecture, let us consider matrices over \mathbb{R}.

1 Elementary matrices and rank

Combining Theorem 11 of Lecture 9 with Theorem 3 of Lecture 7 we obtain that the inverse of an invertible matrix can be written as a product of elementary matrices.

Example 1 Let us consider the invertible matrix

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right)
$$

A possible reduction of A is reduced row-echelon form is the following:

$$
\begin{aligned}
& \left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right) \xrightarrow[R_{1} \leftrightarrow R 2]{\stackrel{i}{4}} \quad\left(\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right) \\
& \xrightarrow[R_{2} \rightarrow R_{2}-2 R_{1}]{i i i)}\left(\begin{array}{cc}
1 & -1 \\
0 & 3
\end{array}\right) \\
& \xrightarrow[R_{2} \rightarrow \frac{1}{3} R_{2}]{i i)}\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \\
& \xrightarrow[R_{1} \rightarrow R_{1}+R 2]{i i i)}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The elementary matrices corresponding to the previous elementary operations are, in order:

$$
E_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right), \quad E_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{3}
\end{array}\right) \quad \text { and } \quad E_{4}=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)
$$

From Theorem 11 in Lecture 8 we thus have $I=A^{-1} A$, where

$$
A^{-1}=E_{4} E_{3} E_{2} E_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{3}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right)
$$

Note that we can also write A as a product of elementary matrices. Indeed, since $A=\left(A^{-1}\right)^{-1}$, we have

$$
\begin{aligned}
A & =\left(E_{4} E_{3} E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

If we combine row operations and column operations, we can get a simpler form of any matrix.

Theorem 2 Let $A \in \mathcal{M}_{m, n}(\mathbb{R})$ be a matrix of rank r. Then there exit two invertible matrices $U \in \mathcal{M}_{m, m}(\mathbb{R})$ and $V \in \mathcal{M}_{n, n}(\mathbb{R})$ such that

$$
U A V=\left(\begin{array}{cc}
I_{r} & O_{r, n-r} \\
O_{m-r, r} & O_{m-r, n-r}
\end{array}\right)
$$

or, for short and when the size is clear from the context, $\left(\begin{array}{cc}I_{r} & O \\ O & O\end{array}\right)$. Moreover, the matrices U and V can be computed using the Gaussian Algorithm as follows:

$$
\left(\begin{array}{ll}
A & I_{m}
\end{array}\right) \rightarrow\left(\begin{array}{ll}
R & U
\end{array}\right)
$$

where R is a reduced row-echelon matrix; and

$$
\left(\begin{array}{ll}
R^{T} & I_{n}
\end{array}\right) \rightarrow\left(\left(\begin{array}{ll}
I_{r} & O \\
O & O
\end{array}\right)^{T} \quad V^{T}\right)
$$

Proof. [Idea] Let us give an idea of the proof.
First, we use a similar idea as the Matrix Inversion Algorithm. We add the $m \times m$ identity matrix to the right side of A to get the $m \times(m+n)$ matrix $\left(\begin{array}{ll}A & I_{m}\end{array}\right)$. Using the Gaussian algorithm we can perform a sequence of elementary row operation and obtain $\left(\begin{array}{ll}R & U\end{array}\right)$, where R is a reduced row-echelon matrix, equivalent to A, and U is the multiplication of the elementary matrices corresponding to the elementary row operations, according to Theorem 11 in Lecture 8.

If R is not already in the form $\left(\begin{array}{cc}I_{r} & O \\ O & O\end{array}\right)$, we consider its transpose R^{T} and we procede in a similar way. We add the $n \times n$ identity matrix to the right side of R^{T}, and doing a sequence of elementary row operations we obtain a matrix of the form $\left(\left(\begin{array}{ll}I_{r} & O \\ O & O\end{array}\right)^{T} \quad V^{T}\right)$. From Theorem 11 in Lecture 8 it follows that V corresponds to the multiplication of the elementary matrices corresponding to the elementary column operations.

Since we have that $R=U A$ in the first step of the theorem, then we also have (always using Theorem 11 in Lecture 8)

$$
\left(\begin{array}{ll}
I_{r} & O \\
O & O
\end{array}\right)^{T}=V^{T} R^{T}=V^{T}(U A)^{T}=V^{T} A^{T} U^{T}=(U A V)^{T}
$$

Recalling that for any matrix B we have $\left(B^{T}\right)^{T}=B$, we can conclude that

$$
U A V=\left(\begin{array}{ll}
I_{r} & O \\
O & O
\end{array}\right)
$$

Example 3 Let us consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & -2 & 3 & 1 \\
-1 & 2 & -1 & 1 \\
2 & -4 & 5 & 1
\end{array}\right)
$$

Let us use Theorem 2 to show that $\operatorname{rank}(A)=2$ and that there exist two matrices U, V such that

$$
U A V=\left(\begin{array}{ll}
I_{2} & O \\
O & O
\end{array}\right)
$$

Let us first consider the reduction $\left(\begin{array}{ll}A & I_{3}\end{array}\right) \rightarrow\left(\begin{array}{ll}R & U\end{array}\right)$ as in the first step of Theorem 2.

$$
\left(\begin{array}{ccccccc}
1 & -2 & 3 & 1 & 1 & 0 & 0 \\
-1 & 2 & -1 & 1 & 0 & 1 & 0 \\
2 & -4 & 5 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow[\substack{R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1}}]{\stackrel{i i i)}{ }}\left(\begin{array}{ccccccc}
1 & -2 & 3 & 1 & 1 & 0 & 0 \\
0 & 0 & 2 & 2 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & -2 & 0 & 1
\end{array}\right)
$$

$$
\begin{gathered}
\xrightarrow[R_{2} \rightarrow \frac{1}{2} R_{2}]{i i)}\left(\begin{array}{ccccccc}
1 & -2 & 3 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & -1 & -1 & -2 & 0 & 1
\end{array}\right) \\
\xrightarrow[\substack{1 \\
R_{1} \rightarrow R_{1}-3 R_{2} \\
R_{3} \rightarrow R_{3}+R_{2}}]{i i i)}\left(\begin{array}{ccccccc}
1 & -2 & 0 & -2 & -\frac{1}{2} & -\frac{3}{2} & 0 \\
0 & 0 & 1 & 1 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & -\frac{3}{2} & \frac{1}{2} & 1
\end{array}\right) .
\end{gathered}
$$

Thus we have

$$
R=\left(\begin{array}{cccc}
1 & -2 & 0 & -2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{ccc}
-\frac{1}{2} & -\frac{3}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{3}{2} & \frac{1}{2} & 1
\end{array}\right) .
$$

Note that here the reduced row-echelon matrix R has a unique form, while U may have different forms.

Moreover, since R has two leadings ones, we have $\operatorname{rank}(A)=\operatorname{rank}(R)=2$.
Using the second step of Theorem 2, that is the reduction of $\left(\begin{array}{ll}R^{T} & I_{4}\end{array}\right)$, we obtain:

$$
\begin{aligned}
& \xrightarrow[R_{2} \leftrightarrow R_{3}]{i)}\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow[R_{4} \rightarrow R_{4}-R_{1}]{i i i)}\left(\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & -1 & 1
\end{array}\right) \text {. } \\
& =\left(\left(\begin{array}{cc}
I_{2} & O_{2,1} \\
O_{2,2} & O_{2,1}
\end{array}\right) \quad V^{T}\right) .
\end{aligned}
$$

where

$$
V=\left(\begin{array}{cccc}
1 & 0 & 2 & 2 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Note that the reduced row-echelon matrix $\left(\begin{array}{cc}I_{2} & O_{2,1} \\ O_{2,2} & O_{2,1}\end{array}\right)$ equivalent to R has a unique form, while V may have different forms.

Finally, one can check that we actually have

$$
\left(\begin{array}{ccc}
-\frac{1}{2} & -\frac{3}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{3}{2} & \frac{1}{2} & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & -2 & 3 & 1 \\
-1 & 2 & -1 & 1 \\
2 & -4 & 5 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 2 & 2 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

that is

$$
U A V=\left(\begin{array}{cc}
I_{2} & O_{2,2} \\
O_{1,2} & O_{1,2}
\end{array}\right)
$$

Example 4 Following the previous example, let us show that given the matrix

$$
A=\left(\begin{array}{lll}
3 & -3 & 6 \\
1 & -1 & 1
\end{array}\right)
$$

we can write

$$
U A V=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

for two invertible matrices U, V (Exercise).

2 Determinant

In Lecture 7 we defined the determinant of a generic 2×2-matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

as

$$
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c .
$$

In this lecture we define the determinant of a generic square matrix and we show how to compute it.

To define the determinant, we give a recursive definition, that is we give a definition for a base case, here for a 1×1-matrix, and then we define the determinant of a $n \times n$-matrix using the determinant of a $(n-1) \times(n-1)$ matrix.

- Let $A=(a) \in \mathcal{M}_{1,1}(\mathbb{R})$. Then $\operatorname{det}(A)=a$.
- Let $A=\left(a_{i j}\right) \in \mathcal{M}_{n, n}(\mathbb{R})$. Then

$$
\begin{equation*}
\operatorname{det}(A)=a_{11} C_{11}(A)+a_{12} C_{12}(A)+\cdots+a_{1 n} C_{1 n}(A) \tag{1}
\end{equation*}
$$

where $C_{i j}(A)$ is called the (i, j)-cofactor of A and it is defined as

$$
C_{i j}(A)=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)
$$

for each i and j, where $A_{i j}$ is the $(n-1) \times(n-1)$-matrix obtained from A by delating the i-row and the j-column. We also call $(-1)^{i+j}$ the sign of the (i, j)-position in A.

Equation (1) is called the Laplace expansion, or cofactor expansion, of A along the 1-row.

Example 5 The definition of determinant is consistent for 2×2-matrices. Indeed we have

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a \cdot(-1)^{1+1} \operatorname{det}(d)+b \cdot(-1)^{1+2} \operatorname{det}(c)=a d-b c
$$

Example 6 Let us find the determinant of a generic 3×3-matrix

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

Using Equation (1) we have

$$
\operatorname{det} A=a_{11} C_{11}(A)+a_{12} C_{12}(A)+a_{13} C_{13}(A)
$$

From the definition of cofactor, it follows that

$$
\begin{gathered}
C_{11}(A)=(-1)^{1+1} \operatorname{det}\left(A_{11}\right)=(-1)^{2} \operatorname{det}\left(\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right)=a_{22} a_{33}-a_{23} a_{32} \\
C_{12}(A)=(-1)^{1+2} \operatorname{det}\left(A_{12}\right)=(-1)^{3} \operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right)=-\left(a_{21} a_{33}-a_{23} a_{31}\right), \\
C_{13}(A)=(-1)^{1+3} \operatorname{det}\left(A_{13}\right)=(-1)^{4} \operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)=a_{21} a_{32}-a_{22} a_{31}
\end{gathered}
$$

Thus, we have

$$
\begin{aligned}
\operatorname{det} A & =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

Example 7 Following the previous example we can find the determinant of the matrix

$$
A=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-1 & 1 & 2 \\
5 & 0 & 3
\end{array}\right)
$$

(Exercise).
When we have a lot of zeros, especially in the first row, the computation is easier.

Example 8 Let us compute the determinant of the matrix

$$
A=\left(\begin{array}{cccc}
0 & a_{12} & 0 & 0 \\
a_{21} & 0 & 0 & 0 \\
0 & 0 & a_{33} & 0 \\
0 & 0 & 0 & a_{44}
\end{array}\right)
$$

By definition we have

$$
\operatorname{det}(A)=a_{12}(-1)^{1+2} \operatorname{det}\left(\begin{array}{ccc}
a_{21} & 0 & 0 \\
0 & a_{33} & 0 \\
0 & 0 & a_{44}
\end{array}\right)
$$

Let us now consider the 3×3-matrix

$$
B=\left(\begin{array}{ccc}
a_{21} & 0 & 0 \\
0 & a_{33} & 0 \\
0 & 0 & a_{44}
\end{array}\right)
$$

Its determinant is given by

$$
\operatorname{det}(B)=a_{21}(-1)^{1+1} \operatorname{det}\left(\begin{array}{cc}
a_{33} & 0 \\
0 & a_{44}
\end{array}\right)=a_{21} \cdot 1 \cdot\left(a_{33} a_{44}\right)=a_{21} a_{33} a_{44}
$$

Thus, we finally have

$$
\operatorname{det} A=a_{12} \cdot(-1) \cdot\left(a_{21} a_{33} a_{44}\right)=-a_{12} a_{21} a_{33} a_{44} .
$$

In the definition of determinant we considered the cofactor expansion along the first row. The following important result show us that we can compute it in a different way.

Theorem 9 (Laplace Expansion Theorem) Let A be a square matrix. The determinant of A is equal to the cofactor expension along any row or along any column of A.

Example 10 Let us consider the matrix

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & 3 \\
1 & 0 & 5 & 7 \\
7 & 9 & 0 & 2 \\
4 & 0 & 0 & 8
\end{array}\right)
$$

A smart way to compute det (A) using a cofactor expansion along the rows and the column having the bigger number of zeros. Let us thus start by doing the cofactor expansion along the 4 -row.

$$
\begin{aligned}
\operatorname{det}(A)= & 4 \cdot(-1)^{4+1} \operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 3 \\
0 & 5 & 7 \\
9 & 0 & 2
\end{array}\right)+0 \cdot(-1)^{4+2} \operatorname{det}\left(\begin{array}{lll}
2 & 0 & 3 \\
1 & 5 & 7 \\
7 & 0 & 2
\end{array}\right) \\
& +0 \cdot(-1)^{4+3} \operatorname{det}\left(\begin{array}{ccc}
2 & -1 & 3 \\
1 & 0 & 7 \\
7 & 9 & 2
\end{array}\right)+8 \cdot(-1)^{4+4} \operatorname{det}\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 0 & 5 \\
7 & 9 & 0
\end{array}\right) \\
= & -4 \operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 3 \\
0 & 5 & 7 \\
9 & 0 & 2
\end{array}\right)+8 \operatorname{det}\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 0 & 5 \\
7 & 9 & 0
\end{array}\right) .
\end{aligned}
$$

Applying the cofactor expansion along the 2 -column of the first matrix and along the 3 -column of the second matrix we obtain respectively:

$$
\operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 3 \\
0 & 5 & 7 \\
9 & 0 & 2
\end{array}\right)=5 \cdot(-1)^{2+2} \operatorname{det}\left(\begin{array}{cc}
-1 & 3 \\
9 & 2
\end{array}\right)=5(-2-27)=-145
$$

and

$$
\operatorname{det}\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 0 & 5 \\
7 & 9 & 0
\end{array}\right)=5 \cdot(-1)^{2+3} \operatorname{det}\left(\begin{array}{cc}
2 & -1 \\
7 & 9
\end{array}\right)=-5(18+7)=-125
$$

Thus

$$
\operatorname{det}(A)=-4 \cdot(-145)+8 \cdot(-125)=-420 .
$$

The following results easily follows from Theorem 9

Corollary 11 If a square matrix A has a row or a column of zeros, then $\operatorname{det}(A)=0$.

Example 12 Let us consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
1 & -1 & 1
\end{array}\right)
$$

Then, using the cofactor expansion along the second row, we find

$$
\operatorname{det}(A)=-0 \cdot \operatorname{det}\left(\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right)+0 \cdot \operatorname{det}\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right)-0 \cdot \operatorname{det}\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right)=0
$$

