MPI - Lecture 10

- Eigenvalues and eigenvectors
- Power methods
- QR algoritmus

Eigenvalues and eigenvectors

Definitions

Eigenvalues and eigenvectors

A complex number λ is called an eigenvalue of the matric $M \in \mathbb{C}^{n, n}$, whenever there exists a non-zero vector $u \in \mathbb{C}^{n}$ such that

$$
M u=\lambda u .
$$

The vector u is called an eigenvector of the matrix M relative to the eigenvalue λ.

The set of eigenvectors of M (relative to the eigenvalues λ and to the zero vector) form a base of the subspace $\operatorname{ker}(M-\lambda E)$.

The eigenvalues of the matrix M are the roots of the characteristic polynomial of the M, that is the polynomial

$$
p_{M}(\lambda):=\operatorname{det}(M-\lambda E) .
$$

Therefore, each matrix $M \in \mathbb{C}^{n, n}$ has at most n different complex eigenvalues.

Diagonalizability

Diagonalizability of a matrix

A matrix $M \in \mathbb{C}^{n, n}$ is diagonalizable when there exist a diagonal matrix $D \in \mathbb{C}^{n, n}$ and a regular matrix $P \in \mathbb{C}^{n, n}$ such that

$$
M=P D P^{-1} .
$$

where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Remind: In the previous lecture we saw that $M^{k}=P D^{k} P^{-1}$.

Remark: The columns of the matrix P are the eigenvectors of M. These eigenvectors form a basis of \mathbb{C}^{n}. The elements of the diagonal matrix D are the eigenvalues of M (with their multiplicity).

Dominant eigenvalue

Let $M \in \mathbb{C}^{n, n}$. Suppose it is diagonalizable and we can order its eigenvalues as follows

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right| .
$$

We are looking for the eigenvector of the eigenvalue λ_{1}, the so-called dominant eigenvalue. It is a vector u_{1} such that

$$
M u_{1}=\lambda_{1} u_{1} .
$$

In general, the matrix need not be diagonalizable, but the ideas would be more complicated (actually, we only require to have one eigenvalue which is the greatest in absolute value).

Applications

Eigenvalues play an importan role in several applications:

- Classification of conics and quadratic forms (geometry).
- Quantum computation, quantum mechanics, asymptotic behaviour of dynamical systems (physics).
- PCA, or Principal Component Analysis (big data).
- Recognition of 2D and 3D objects using spectral methods (AI).
- More practical example: PageRank mesures a relative importance of WWW documents by ispecting links between them.
- Its values is in fact an eigenvector of the dominant eigenvalues of a modified adjacency matrix of these links. This matrix satisfies requirement of our problem.
- PageRank is calculated using power methods.

Power method

Introduction

In its basic variant, the power method is used to find the dominant eigenvalue
of a matrix,

Given a matrix $M \in \mathbb{C}^{n, n}$ let us consider a regular matrix $P \in \mathbb{C}^{n, n}$ such that

$$
M=P D P^{-1}
$$

where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Let also suppose that the values are ordered:

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

Note: We suppose that the dominant eigenvalue λ_{1} is not degerate (i.e., that the correspoinding eigenspace has dimension 1).
\qquad
We are looking for an eigenvector associated to the eigenvalue λ_{1}, that is a non-zero vector u_{1} such that

$$
M u_{1}=\lambda_{1} u_{1} .
$$

The power method is an iterative method. We will construct a sequence $\left(x_{k}\right)_{k}$ as follows: x_{0} is chosen randomly and the next terms are determined by

$$
x_{k}=M x_{k-1} \quad \text { for } k>0 .
$$

Equivalently, we have

$$
x_{k}=M^{k} x_{0} \quad k \in \mathbb{N}_{0} .
$$

Principle

If M is regular, thus diagonalizable, there exist eigenvectors $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, which form a basis of $\mathbb{C}^{n, 1}$.

If M is not regular, then we need to complete the set of eigenvectors by a basis of the kernel of M.

The vector x_{0} can be written as $x_{0}=\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}$.
Suppose that $\alpha_{1} \neq 0$.
Coefficients α_{i} can be absorbed by the eigenvectors $\left(u_{i}^{\prime}=\alpha_{i} u_{i}\right)$ and we have

$$
x_{0}=u_{1}^{\prime}+\cdots+u_{n}^{\prime} .
$$

The recurrent definition of x_{k} implies

$$
\begin{aligned}
x_{k} & =M^{k} x_{0} \\
& =M^{k} u_{1}+\cdots+M^{k} u_{n} \\
& =\lambda_{1}^{k} u_{1}+\cdots+\lambda_{n}^{k} u_{n} .
\end{aligned}
$$

The last equality gives

$$
x_{k}=\lambda_{1}^{k}\left(u_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} u_{2}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} u_{n}\right) .
$$

We rewrite it as

$$
x_{k}=\lambda_{1}^{k}\left(u_{1}+\varepsilon_{k}\right) .
$$

Since for all $j>1$ we have $\left|\frac{\lambda_{j}}{\lambda_{1}}\right|<1$, then $\lim _{k \rightarrow+\infty} \varepsilon_{k}=0$.

The sequence $\left(\frac{x_{k}}{\lambda_{1}^{k}}\right)_{k}$ "converges" to the eigenvector of the dominant eigenvalues.

We have $\left\|x_{k}\right\| \rightarrow+\infty$. Thus we need to control the norm: we may set it to 1 at each step (by normalizing, i.e., considering $y_{k}=\frac{x_{k}}{\left\|x_{k}\right\|}$).

To have convergence also for the case $\lambda_{1}<0$, we need to pick the right direction for the eigenvector so that it does not oscillate. We may do this by setting the largest entry in absolute value to 1 (and thus use the maximum norm).

The speed of convergence is given by λ_{2} since $\left\|\varepsilon_{k}\right\|=\mathcal{O}\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)$

How to find the dominant eigenvalue?

If φ is a linear mapping $\varphi: \mathbb{C}^{n, 1} \mapsto \mathbb{C}$ such that $\varphi\left(u_{1}\right) \neq 0$, then
$\frac{\varphi\left(x_{k+1}\right)}{\varphi\left(x_{k}\right)}=\frac{\varphi\left(\lambda_{1}^{k+1}\left(u_{1}+\varepsilon_{k+1}\right)\right)}{\varphi\left(\lambda_{1}^{k}\left(u_{1}+\varepsilon_{k}\right)\right)}=\frac{\lambda_{1}^{k+1}\left(\varphi\left(u_{1}\right)+\varphi\left(\varepsilon_{k+1}\right)\right)}{\lambda_{1}^{k}\left(\varphi\left(u_{1}\right)+\varphi\left(\varepsilon_{k}\right)\right)} \rightarrow \lambda_{1} \quad$ for $k \rightarrow+\infty$.

The mapping φ can be set to the mapping defined for all $x \in \mathbb{C}^{n, 1}$ as $\varphi(x)=x_{(1)}$ where $x_{(1)}$ is the first component $x\left(\right.$ if $\left.\varphi\left(u_{1}\right) \neq 0\right)$).

Examples

Let us find the dominant eigenvector of $M=\left(\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right)$, which satisfies the conditions of power method.

The exact solution is $u_{1}=(1, \sqrt{2}+1)=\frac{1}{\sqrt{2}+1}(\sqrt{2}-1,1)$, with eigenvalue $\lambda_{1}=3+\sqrt{2}$.

k	\widehat{x}_{k}	$\left\\|\widehat{x}_{k}-\widehat{x}_{k-1}\right\\|_{\infty}$
0	$(1.0,1.0)$	-
1	$(0.59999999999999998,1.0)$	0.4
2	$(0.47826086956521746,1.0)$	0.121739130435
3	$(0.43689320388349517,1.0)$	0.0413676656817
4	$(0.42231947483588622,1.0)$	0.0145737290476
5	$(0.4171202375061851,1.0)$	0.0051992373297

In the calculations, the maximum entry in absolute value is set to 1 at each step and the convergence criterion $\left\|\widehat{x}_{k}-\widehat{x}_{k-1}\right\|_{\infty}<10^{-2}$.

Let us consider the matrix

Power method demonstration in $\mathbb{C}^{n, n}(1 / 2)$

$$
M=\left(\begin{array}{cccc}
36408+16769 i & -5412-2481 i & 107256+49397 i & -492-214 i \\
-10656-5164 i & 1584+762 i & -31392-15210 i & 144+66 i \\
-12876-5954 i & 1914+881 i & -37932-17539 i & 174+76 i \\
4329-262 i & -643+39 i & 12753-771 i & -58+6 i
\end{array}\right)
$$

The eigenvalues are $-2 i,-i, 3 i / 2$ and $3 / 2$.
Let us fix the accuracy at $\varepsilon=10^{-6}$. The last 7 iterations of $\lambda_{1}^{(k)}$ are:

$$
\begin{array}{r}
0.0000477588150960872-1.99991424541241 i \\
-0.0000479821875446196-1.99998019901599 i \\
-0.0000272650944159076-2.00002375338328 i \\
0.0000271520045767515-2.00002973125038 i \\
0.0000154506695115737-1.99997272532314 i \\
-0.0000152424622193764-1.99999349337182 i
\end{array}
$$

Other eigenvalues

Power method: other eigenvalues

Suppose that using the power method we found the dominant eigenvalue λ_{1} and its correspoding (normalized) eigenvector u_{1}. How can we find the other eigenvalues?

Suppose that the matrix M is normal (i.e., that $M M^{*}=M^{*} M$, where M^{*} is the conjugate transpose of M). Then its eigenvectors are orthogonal.

We can consider a new matrix M^{\prime} defined as:

$$
M^{\prime}:=M-\lambda_{1} u_{1} \cdot u_{1}^{*}
$$

The matrix M^{\prime} has u_{1} as eigenvector, but the associated eigenvalue is 0 , indeed:

$$
M^{\prime} u_{1}=M u_{1}-\lambda_{1} u_{1} \cdot\left\|u_{1}\right\|^{2}=\lambda_{1} u_{1}-\lambda_{1} u_{1}=0 .
$$

We can now apply the power method to the matrix M^{\prime}. The dominant eigenvalue of M^{\prime} will be the second largest (in absolute value) eigenvalue of M.

QR algoritmus

Factorization and algorithm

QR factoriza-
tion and QR algorithm (1/2)

Other algorithms are based on the fact that similar matrices have the same eigenvalues. The goal of QR algorithm is to construct a sequence $\left(M_{k}\right)_{k=0}^{\infty}$ of similar matrices in the following way:

$$
M_{0}=M \quad \text { and } \quad M_{k}=P_{k} M_{k-1} P_{k}^{-1} k \in \mathbb{N},
$$

where each P_{k} is a regular matrix, $M_{k} \rightarrow M_{\infty}$ and for M_{∞} is easy to find the eigenvalues (for instance, M_{∞} is upper triangular).

The QR factorization consists in expressing a real (or complex) matrix ${ }^{\text {algorithm (2/2) }}$ $M \in \mathbb{R}^{n, n}$ as a product

$$
M=Q \cdot R
$$

where Q is an orthogonal matrix (unitary if $M \in \mathbb{C}^{n, n}$) and R is upper triangular.

There exist several algorithms to compute such a factorization (GramSchmidt, LR algorithm, ...)

The QR algorithm consists in applying such a factorization at any step, that is for every k we have

$$
M_{k}=Q_{k} \cdot R_{k}
$$

and we define

$$
M_{k+1}:=R_{k} Q_{k}=Q_{k}^{-1} Q_{k} R_{k} Q_{k}=Q_{k}^{-1} M_{k} Q_{k} .
$$

We start the iteration with $M_{0}=M$. Every matrix M_{k} is similar to the previous matrix M_{k-1} in the sequence, so that all matrices have the same eigenvalues.

Under certain conditions M_{k} converges to a triangular matrix.

