
MPI - Lecture 10

Outline

• Eigenvalues and eigenvectors

• Power methods

• QR algoritmus

Eigenvalues and eigenvectors

Definitions

Eigenvalues and
eigenvectors

A complex number λ is called an eigenvalue of the matric M ∈ Cn,n, when-
ever there exists a non-zero vector u ∈ Cn such that

Mu = λu.

The vector u is called an eigenvector of the matrix M relative to the
eigenvalue λ.

The set of eigenvectors of M (relative to the eigenvalues λ and to the zero
vector) form a base of the subspace ker(M − λE).

The eigenvalues of the matrixM are the roots of the characteristic poly-
nomial of the M , that is the polynomial

pM (λ) := det(M − λE).

Therefore, each matrix M ∈ Cn,n has at most n different complex eigen-
values.
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Diagonalizability

Diagonalizability
of a matrix

A matrix M ∈ Cn,n is diagonalizable when there exist a diagonal matrix
D ∈ Cn,n and a regular matrix P ∈ Cn,n such that

M = PDP−1.

where D = diag(λ1, . . . , λn).

Remind: In the previous lecture we saw that Mk = PDkP−1.

Remark: The columns of the matrix P are the eigenvectors of M . These
eigenvectors form a basis of Cn. The elements of the diagonal matrix D are
the eigenvalues of M (with their multiplicity).

Dominant eigenvalue

Looking for an
eigenvector

Let M ∈ Cn,n. Suppose it is diagonalizable and we can order its eigenvalues
as follows

|λ1| > |λ2| ≥ . . . ≥ |λn|.

We are looking for the eigenvector of the eigenvalue λ1, the so-called dom-
inant eigenvalue. It is a vector u1 such that

Mu1 = λ1u1.

In general, the matrix need not be diagonalizable, but the ideas would be
more complicated (actually, we only require to have one eigenvalue which is
the greatest in absolute value).
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Applications

Applications

Eigenvalues play an importan role in several applications:

• Classification of conics and quadratic forms (geometry).

• Quantum computation, quantum mechanics, asymptotic behaviour of
dynamical systems (physics).

• PCA, or Principal Component Analysis (big data).

• Recognition of 2D and 3D objects using spectral methods (AI).

• More practical example: PageRank mesures a relative importance of
WWW documents by ispecting links between them.

– Its values is in fact an eigenvector of the dominant eigenvalues of
a modified adjacency matrix of these links. This matrix satisfies
requirement of our problem.

– PageRank is calculated using power methods.
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Power method

Introduction

Introduction
and assump-
tions (1/2)In its basic variant, the power method is used to find the dominant eigenvalue

of a matrix,

Given a matrix M ∈ Cn,n let us consider a regular matrix P ∈ Cn,n such
that

M = PDP−1

where D = diag(λ1, . . . , λn). Let also suppose that the values are ordered:

|λ1| > |λ2| ≥ · · · ≥ |λn|.

Note: We suppose that the dominant eigenvalue λ1 is not degerate (i.e.,
that the correspoinding eigenspace has dimension 1).

Introduction
and assump-
tions (2/2)We are looking for an eigenvector associated to the eigenvalue λ1, that is

a non-zero vector u1 such that

Mu1 = λ1u1.

The power method is an iterative method. We will construct a se-
quence (xk)k as follows: x0 is chosen randomly and the next terms are deter-
mined by

xk = Mxk−1 for k > 0.

Equivalently, we have
xk = Mkx0 k ∈ N0.
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Principle

Power method
principle (1/4)

If M is regular, thus diagonalizable, there exist eigenvectors {u1, u2, . . . , un},
which form a basis of Cn,1.

If M is not regular, then we need to complete the set of eigenvectors by a
basis of the kernel of M .

The vector x0 can be written as x0 = α1u1 + · · ·+ αnun.
Suppose that α1 6= 0.

Coefficients αi can be absorbed by the eigenvectors (u′i = αiui) and we
have

x0 = u′1 + · · ·+ u′n.

Power method
principle (2/4)

The recurrent definition of xk implies

xk = Mkx0

= Mku1 + · · ·+Mkun

= λk
1u1 + · · ·+ λk

nun.

The last equality gives

xk = λk
1

(
u1 +

(
λ2
λ1

)k

u2 + · · ·+
(
λn

λ1

)k

un

)
.

We rewrite it as
xk = λk

1 (u1 + εk) .

Since for all j > 1 we have
∣∣∣∣λj

λ1

∣∣∣∣ < 1, then lim
k→+∞

εk = 0.

Power method
principle (3/4)

The sequence
(
xk

λk
1

)
k

“converges” to the eigenvector of the dominant eigen-

values.
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We have ‖xk‖ → +∞. Thus we need to control the norm: we may set it
to 1 at each step (by normalizing, i.e., considering yk = xk

‖xk‖
).

To have convergence also for the case λ1 < 0, we need to pick the right
direction for the eigenvector so that it does not oscillate. We may do this by
setting the largest entry in absolute value to 1 (and thus use the maximum
norm).

The speed of convergence is given by λ2 since ‖εk‖ = O
(∣∣∣∣λ2
λ1

∣∣∣∣k
)

Power method
principe (4/4)

How to find the dominant eigenvalue?

If ϕ is a linear mapping ϕ : Cn,1 7→ C such that ϕ(u1) 6= 0, then

ϕ(xk+1)
ϕ(xk) =

ϕ
(
λk+1

1 (u1 + εk+1)
)

ϕ
(
λk

1 (u1 + εk)
) = λk+1

1 (ϕ(u1) + ϕ(εk+1))
λk

1 (ϕ(u1) + ϕ(εk))
→ λ1 for k → +∞.

The mapping ϕ can be set to the mapping defined for all x ∈ Cn,1 as
ϕ(x) = x(1) where x(1) is the first component x (if ϕ(u1) 6= 0)).
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Examples

Power method -
demonstration
in Rn,n

Let us find the dominant eigenvector of M =
(

2 1
1 4

)
, which satisfies the

conditions of power method.
The exact solution is u1 = (1,

√
2+1) = 1√

2 + 1
(
√

2−1, 1), with eigenvalue

λ1 = 3 +
√

2.

k x̂k ‖x̂k − x̂k−1‖∞
0 (1.0, 1.0) -
1 (0.59999999999999998, 1.0) 0.4
2 (0.47826086956521746, 1.0) 0.121739130435
3 (0.43689320388349517, 1.0) 0.0413676656817
4 (0.42231947483588622, 1.0) 0.0145737290476
5 (0.4171202375061851, 1.0) 0.0051992373297

In the calculations, the maximum entry in absolute value is set to 1 at
each step and the convergence criterion ‖x̂k − x̂k−1‖∞ < 10−2.

Power method -
demonstration
in Cn,n (1/2)Let us consider the matrix

M =


36408 + 16769i −5412− 2481i 107256 + 49397i −492− 214i
−10656− 5164i 1584 + 762i −31392− 15210i 144 + 66i
−12876− 5954i 1914 + 881i −37932− 17539i 174 + 76i

4329− 262i −643 + 39i 12753− 771i −58 + 6i


The eigenvalues are −2i, −i, 3i/2 and 3/2.

Let us fix the accuracy at ε = 10−6. The last 7 iterations of λ(k)
1 are:

0.0000477588150960872 - 1.99991424541241 i
-0.0000479821875446196 - 1.99998019901599 i
-0.0000272650944159076 - 2.00002375338328 i
0.0000271520045767515 - 2.00002973125038 i
0.0000154506695115737 - 1.99997272532314 i
-0.0000152424622193764 - 1.99999349337182 i



8

Power method -
demonstration
in Cn,n (2/2)

Other eigenvalues

Power method:
other eigenval-
uesSuppose that using the power method we found the dominant eigenvalue λ1

and its correspoding (normalized) eigenvector u1. How can we find the other
eigenvalues?

Suppose that the matrix M is normal (i.e., that MM∗ = M∗M , where
M∗ is the conjugate transpose of M). Then its eigenvectors are orthogonal.

We can consider a new matrix M ′ defined as:

M ′ := M − λ1u1 · u∗1

The matrix M ′ has u1 as eigenvector, but the associated eigenvalue is 0,
indeed:

M ′u1 = Mu1 − λ1u1 · ‖u1‖2 = λ1u1 − λ1u1 = 0.

We can now apply the power method to the matrix M ′. The dominant
eigenvalue of M ′ will be the second largest (in absolute value) eigenvalue of
M .
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QR algoritmus

Factorization and algorithm

QR factoriza-
tion and QR
algorithm (1/2)The power method is not suitable to find all eigenvalues of a given matrix M .

Other algorithms are based on the fact that similar matrices have the same
eigenvalues. The goal of QR algorithm is to construct a sequence (Mk)∞k=0 of
similar matrices in the following way:

M0 = M and Mk = PkMk−1P
−1
k k ∈ N,

where each Pk is a regular matrix, Mk →M∞ and for M∞ is easy to find the
eigenvalues (for instance, M∞ is upper triangular).

QR factoriza-
tion and QR
algorithm (2/2)The QR factorization consists in expressing a real (or complex) matrix

M ∈ Rn,n as a product
M = Q ·R

where Q is an orthogonal matrix (unitary if M ∈ Cn,n) and R is upper
triangular.

There exist several algorithms to compute such a factorization (Gram-
Schmidt, LR algorithm, . . . )

The QR algorithm consists in applying such a factorization at any step,
that is for every k we have

Mk = Qk ·Rk

and we define

Mk+1 := RkQk = Q−1
k QkRkQk = Q−1

k MkQk.

We start the iteration with M0 = M . Every matrix Mk is similar to the
previous matrix Mk−1 in the sequence, so that all matrices have the same
eigenvalues.

Under certain conditions Mk converges to a triangular matrix.


