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Introduction and motivation
Searching
for hidden
similarities. . .Let us consider this objects:

• the set Z of integers with the usual sum;

• the set of matrices Rn,n with the operation of matrix multiplication;

• the set of relations on a set A with the operation of relation composition;

• the set {0, 1, 2, 3} with the multiplication (mod 4) ;

• the set of finite automata with the operation of composition;

• the set of all colors with the operation “mixing”;

• . . .
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What do they have in common?
Still the same
structure!

All presented objects have the same structure. Indeed, they consist of two
ingredients:

• A (finite or infinite) set of objects.

• A binary operation mapping two objects onto (exactly) one object
(from the same set of objects).

Generally, we speak about a pair of: a set and a binary operation on
it.

We will (mostly) use one of the following notations: (M, ·) (multiplicative
notation), (M, +) (additive notation), or (M, ◦) (general notation), where

• M 6= ∅ is a set, and

• for binary operation we have · : M ×M →M (resp. + : M ×M →M ,
resp. ◦ : M ×M →M).

What is going
on in algebra?

The pair of “a set and a binary operation on it” could represent very
different structures. We shall classify them by their properties.

We are interested in properties of the binary operation:

1. Is it associative?

2. It is commutative?

3. Are there some neutral elements for the binary operation?

Why are we doing this?

If we prove some statement for a general structure (M, ·), where · is
an associative operation, this statement is proved for all particular
structures with an associative binary operation! A proof of this
statement is reduced to a proof of associativity of the operation!
We can understand a general structure as a parent object, from
which particular structures inherit all its properties (see below).
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Example of “in-
heritance” (1/4)

On the set of non-zero real numbers we prove the following (trivial) theo-
rem:

Theorem 1. For all b, c ∈ R\{0}, the equation bx = c has solution x = b−1c.

Proof.
bx = c [multiplication on the left by the inverse element b−1]

b−1(bx) = b−1c [moving brackets due to associativity]
(b−1b)x = b−1c [for arbitrary b we have b−1b = 1]

1x = b−1c [for arbitrary x we have 1x = x]
x = b−1c

What was fundamental for the proof: associativity, existence of (left)
inverse element, existence of the neutral element.

Example of “in-
heritance” (2/4)

Let us consider a set M of all matrices Rn,n with the operation of matrix
multiplication.

• Is the matrix multiplication associative? Yes. For ∀A, B, C ∈ M we
have A(BC) = (AB)C.

• Is there a neutral element? Yes. The identity matrix In has the
property InA = A valid for all A ∈M .

• Is there an inverse matrix for all A ∈ M? No! We have to restrict
ourselves to the set of regular matrices Mreg.

Example of “in-
heritance” (3/4)

We have everything needed to prove the theorem for matrices.

Theorem 2. For all B, C ∈ Mreg, the equation BX = C has solution X =
B−1C.

Proof.
BX = C [multiplication on the left by the inverse element B−1]

B−1(BX) = B−1C [moving brackets due to associativity]
(B−1B)X = B−1C [for arbitrary B we have B−1B = In]

InX = B−1C [for arbitrary C we have InX = X]
X = B−1C
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What was fundamental for the proof: associativity, existence of (left)
inverse element, existence of the neutral element.

Example of “in-
heritance” (4/4)

Suppose that we are given a pair (M, ·) where the associativity law holds,
for each element b ∈ M there exists an inverse element, denoted by b−1, and
there exists a neutral element e. We will call such pair a group.

We have a general theorem.

Theorem 3. For arbitrary elements b, c of a group (M, ·), the equation bx = c
has solution x = b−1c.

Proof.

bx = c [multiplication on the left by the inverse element b−1]
b−1(bx) = b−1c [moving brackets due to associativity]
(b−1b)x = b−1c [for arbitrary b we have b−1b = e]

ex = b−1c [for arbitrary x we have 1x = x]
x = b−1c

Hierarchy of sets with one binary operation

Introduction

Sets with one bi-
nary operation

We call an arbitrary pair “a set and a binary operation” a groupoid. Adding
another requirements we get further notions.
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grupoid

semigroup

monoid

group

Abelian group

associativity

neutral element

inverse element

commutativity

Examples

• For the pair (R \ {0}, ·), the associative and commutative laws hold, the
neutral element is 1 and the inverse element for b is b−1 = 1/b.
It is an Abelian group.

• For the pair (Z, +) associative and commutative laws hold, the neutral
element is 0 and the inverse element for b is b−1 = −b.
It is an Abelian group.

• For the pair (Mreg, ·) associativity law holds, the neutral element and
the inverse exist, but the commutative law is not valid!
It is a group, but not Abelian.

Mathematical
analogy to
Object-oriented
programmingWe can consider the groupoid, monoid, etc., as mathematical (abstract)

objects, for which a nonempty set and a binary operation with given properties
are defined.

For this abstract classes we can prove various statements (for example the
theorem on solving linear equation for groups).



6

If for some particular pair (M, ◦) we prove that it is a groupoid, monoid,
etc., it means that it “inherits” all this statements and we don’t need to prove
them separately!

This analogy could be employed in real programming.

Definitions and elementary properties

Groupoid, semi-
group, monoid,
groupDefinition 4. • An ordered pair (M, ◦), where M is an arbitrary non-

empty set and ◦ is a binary operation on M , is called a groupoid.

• A groupoid (M, ◦) such that ◦ is associative is called a semigroup.

• A semigroup (M, ◦) such that there exists a neutral element e satisfying

∀ a ∈M holds e ◦ a = a ◦ e = a

is called a monoid.

• A monoid (M, ◦) such that for each a ∈ M there exists an inverse ele-
ment a−1 ∈M satisfying

a−1 ◦ a = a ◦ a−1 = e

is called a group.

• Moreover, if ◦ is commutative, we say that a group (M, ◦) is a commu-
tative (or Abelian) group.

Set closed under
the binary op-
eration. What
does it mean?In the definition we require the binary operation ◦ to be a “binary opera-

tion on M”.
This means that the result of a binary operation applied on two elements

from M again belongs to M – we say that the set M is closed under ◦.

Example 5. The pair (Z−, ·) of negative integers with the usual multiplication
is not even a groupoid, because it is not closed under the operation: (−1) ·
(−1) = 1 /∈ Z−.

Whether the set is or is not closed under the binary operation is not always
obvious.
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Example 6. Let us consider the couple (Mtriang, ·) of lower triangular ma-
trixes with the usual matrix multiplication. Is Mtriang closed under the opera-
tion ·?

=
?

Manual for clas-
sification of sets
with binary op-
erationIf we have a given pair “a set and a binary operation” and we want to

find out whether it is a groupoid, semigroup, monoid, (Abelian) group, we
can proceed this way:

1. Is the set closed under the operation? If yes, it is a groupoid; if not, END.

2. Does the associativity law hold? If yes, it is a semigroup; if not, END.

3. Is there a neutral element? If yes, it is a monoid; if not, END.

4. Is there an inverse to each element? If yes, it is a group; if not, END.

5. Does the commutativity law hold? If yes, it is an Abelian group; if not,
END.

Mostly “proofs” in these individual steps are very easy or obvious. Some-
times, they only seem obvious.

Groupoid, semi-
group, monoid,
group – exam-
ples (1/4)Example 7. Let us consider the groupoid (Q, ◦), where the binary operation

◦ is defined as the arithmetic mean:

a ◦ b = a + b

2 .

Is this structure a semigroup / monoid / group?

In a semigroup, the associative law must hold. Let us claim that for the
operation ◦ the law does not hold, and let us prove it by a counterexample:

(2 ◦ −2) ◦ 4 = 0 ◦ 4 = 2 but 2 ◦ (−2 ◦ 4) = 2 ◦ 1 = 3
2 .

So, the associative law does not hold, and the structure is not a semigroup.
It follows that Q with this operation is neither a monoid nor a group.
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Groupoid, semi-
group, monoid,
group – exam-
ples (2/4)

Example 8. Let us consider a groupoid (R+, ◦), where the binary operation
◦ is defined as follows:

a ◦ b = a · b
a + b

.

• Is (R+, ◦) a semigroup?

• Is (R+, ◦) a monoid?

Groupoid, semi-
group, monoid,
group – exam-
ples (3/4)Example 9. Let us consider a groupoid (R, ·), where the binary operation is

the usual multiplication of numbers.

• Is it a semigroup?

• Is it a monoid?

• Is it a group?

Groupoid, semi-
group, monoid,
group – exam-
ples (4/4)From the definition it follows that each group is a monoid, each monoid is

a semigroup and each semigroup is a groupoid. Written in symbols we get:

groupoid ⊃ semigroup ⊃ monoid ⊃ group .

From the previous three examples we can be even more specific:

groupoid ) semigroup ) monoid ) group ,

because we have found a groupoid that is not a semigroup, a semigroup that
is not a monoid, and a monoid that is not a group.

Uniqueness of
neutral element

Theorem 10. Given a monoid, there exists exactly one neutral element.
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Proof. Let (M, ◦) be a monoid and e some neutral element (by definition we
know that at least one exists!).

We prove by contradiction that e is the only neutral element.
By contradiction, assume that in the monoid there exists another neutral

element e different from e.
Using the property of the neutral element, it holds that

e = e ◦ e = e.

We get a contradiction with the assumption that e 6= e.

Uniqueness
of the inverse
element

Theorem 11. Given a group, each element has exactly one inverse element.

Proof. Let (G, ◦) be a group, a an arbitrary element of the group and a−1

one of its inverse elements (from the definition of a group we know that there
exists at least one!).

We prove by contradiction that a−1 is the only one.
Assume that there exists another inverse element a different from a−1.

Hence it holds that

a = a ◦ e = a ◦
(
a ◦ a−1

)
= (a ◦ a) ◦ a−1 = e ◦ a−1 = a−1

where e is the unique neutral element.
Thus we get a contradiction with the assumption that a 6= a−1.

Cayley table

Cayley tables
for finite groups

If the set M from the pair (M, ◦) has a finite number of elements, its structure
(with the given operation ◦) could be completely represented by the Cayley
table.

Its construction is obvious from the following example.

Example 12. Let us consider (Z4, +4), i.e., the set of numbers {0, 1, 2, 3}
with addition modulo 4. Since the set has 4 elements, the Cayley table has 4
rows and 4 columns:
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+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

So, in the cell in row m and column n we write the result of m +4 n =
m + n (mod 4).

For example the cell in row 2 and column 3 is filled with 2+3 (mod 4) = 1.

What can be
easily read from
a Cayley tableCayley table offers all information about a given set and operation.

Some properties are very easy to read from the table; others with some
difficulty:

• The set M is closed under the operation ◦ if all cells of the table contain
elements from the set M only.

• The associativity law is difficult to read.

• The neutral element e is the one for which the corresponding row and
column are just a copy of the first row and the first column of the table.

• The inverse element to the element a is the one corresponding to the
row and column where the neutral element e is placed.

• . . .

Cayley table
and latin square
(1/4)Question: Is it possible to recognize whether a table is a Cayley table of

a group? Answer: Almost.

Theorem 13. The Cayley table of each group forms a latin square.

A latin square for a set M of n elements is a matrix n× n such that each
row and column contains all elements of the set M .

We prove the theorem by proving another one from which the statement
of the original theorem follows directly.
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Unfortunately, not each Cayley table forming a latin square is a Cayley
table of a group. Later we present a counterexample.

Cayley table
and latin square
(2/4)

Theorem 14. In each group, we can divide uniquely. In other words: in
each group (G, ◦), for arbitrary a, b ∈ G the equations

a ◦ x = b and y ◦ a = b

have only one solution.

Proof. Since we are in a group, each element has only one inverse.
The only solutions of the equations are x = a−1 ◦ b and y = b ◦ a−1.

It is possible to prove that a group is a semigroup with a “unique division”,
i.e., the unique division guarantees the existence of a neutral element and
inverse.

Cayley table
and latin square
(3/4)Now we prove the theorem saying that the Cayley table of group is a latin

square.

Proof. Proof by contradiction.
Let us suppose that the table of some group (G, ◦) is not a latin square.
Hence, in some row or column there is one element, denote it as b, repeated

twice. WLOG1, assume that it happens in row n and columns m1 and m2.

◦ · · · m1 · · · m2 · · ·
...

...
...

n · · · b · · · b · · ·
...

...
...

It follows that the equation n ◦ x = b has two different solutions, namely
m1 and m2, which is a contradiction with the previous theorem!

Cayley table
and latin square
(4/4)We have shown that the fact that a Cayley table is a latin square is a

necessary condition for the given set and operation to be a group.

The following example says it is not a sufficient condition.
1Without Loss Of Generality
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Example 15. Let us consider a set M = {a, b, c} with operation given by the
Cayley table:

◦ a b c

a b a c

b c b a

c a c b

This table creates a latin square; in spite of it, it is not the table of a group
(Why?!).

Cayley graph

Cayley graph of
a group

A finite Abelian group G = (M, ◦) may be visualised by a Cayley graph with

• set of vertices V being the elements of G, i.e., V = M ,

• set of directed edges E the set of (ordered) pairs (a, b) such that b = a◦c
for some c ∈ M (or, as we can see, for some c ∈ N with N a subset of
M).

0

1

2

3

If the group in question is not Abelian, we need to depict edges (a, b) for
b = c ◦ a for some c ∈M .


