MPI - Lecture 8

	Outline
• Motivation;	
• Basic definitions;	
• Fuzzy control systems	
Fuzzy logic	
Motivation	
	Introduction
Consider having a pot of water having temperature of x degrees Celsius.	
Is the water hot ? Is the water cold ?	
Sometimes we want to describe systems by properties which are not evaluated as true or false (and we do not have the exact value of x).	

Fuzzy logic / fuzzy control systems allow such description: truth and false-hood notions are graded and allow to state, for instance, that the water is "tepid".

Basic definitions

Universe and crisp sets

Let U denote the universe, that is, our play ground containing every set that we may consider.

A set $A \subset U$ can be given by its characteristic function:

$$\chi_A: U \to \{0,1\}, \qquad \chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

There is a bijection between sets and characteristic functions, so we identify each set with its characteristic function.

A is a set in the ordinary sense, sometimes called a crisp set.

Fuzzy sets

Fuzzy sets generalize this concept and allow elements to belong to a given set with a certain *degree*.

We replace the characteristic function by a membership function

$$\mu_A: U \to [0,1].$$

A fuzzy subset A of a set X is a function $\mu_A: X \to [0,1]$.

For every element $x \in X$, the degree of membership of x to A is given by $\mu_A(x) \in [0,1]$.

Example

Let X = [0, 100] be the set of temperatures of water in our pot.

We consider three fuzzy subsets of X to describe cold, tepid and hot temperatures.

The membership functions may be given as follows:

Given a set X and its power set $\mathcal{P}(X)$ (the set of all subsets of X), the operations of union, intersection, and complement are given as follows (for usual sets):

$$A \cup B = \left\{x: \ x \in A \text{ or } x \in B\right\},$$

$$A \cap B = \left\{x: \ x \in A \text{ and } x \in B\right\},$$

$$A^{\complement} = X \setminus A = \left\{x \in X: \ x \not\in A\right\}.$$

How do these operations translate to characteristic functions?

$$\chi_{A \cup B} = \max\{\chi_A, \chi_B\},$$

$$\chi_{A \cap B} = \min\{\chi_A, \chi_B\},$$

$$\chi_{A^{\complement}} = 1 - \chi_A.$$

Operations fuzzy sets

For fuzzy sets, we can define the membership function of a union, intersection, or a complement in the same way.

Let A and B be two fuzzy subsets of X.

We set

$$\begin{split} \mu_{A \cup B} &= \max\{\mu_A, \mu_B\}, \\ \mu_{A \cap B} &= \min\{\mu_A, \mu_B\}, \\ \mu_{A \mathbb{G}} &= 1 - \mu_A. \end{split}$$

Examples

Operations

Our choice for fuzzy set operation was fast. Let A and B be two subsets of X. We have

$$\begin{split} \chi_{A\cap B} &= \min\{\chi_A, \chi_B\} \\ &= \chi_A \chi_B \\ &= \max\left\{0, \ \chi_A(x) + \chi_B(x) - 1\right\}. \end{split}$$

We can extend the second definition to membership functions and obtain another definition of union and intersection of fuzzy sets.

We shall do this in a more general fashion.

t-norms

We have the following requirements of a mapping

$$\star : [0,1] \times [0,1] \to [0,1]$$

that would interpret intersection of two fuzzy sets.

- 1. $1 \star x = x$ for all $x \in [0, 1]$,
- 2. $0 \star x = 0$ for all $x \in [0, 1]$,
- 3. $x \star y = y \star x$ for all $x, y \in [0, 1]$ (commutativity),
- 4. $(x \star y) \star z = x \star (y \star z)$ for all $x, y, z \in [0, 1]$ (associativity),
- 5. $x \le y$ and $w \le z$ implies $x \star w \le y \star z$ (monotonicity).

Various t-norms

The following t-norms are usually considered. Let $x, y \in [0, 1]$.

- (i) Gödel t-norm: $x \star y = \min\{x, y\},\$
- (ii) **product** t-norm: $x \star y = x \cdot y$,
- (iii) Łukasiewicz t-norm: $x \star y = \max\{0, x + y 1\},\$

- (iv) Hamacher product t-norm: $x \star y = \begin{cases} 0 & \text{if } x = y = 0 \\ \frac{xy}{x + y xy} & \text{otherwise} \end{cases}$,
- (v) ...

The distinct t-norms give us distinct strategies on how to interpret intersection of fuzzy sets.

If we have intersection and complement, we define union by $A \cup B = \left(A^\complement \cap B^\complement\right)^\complement$ (De Morgan's laws).

Reasoning fuzzy logic

In classical logic we can have the following statements:

If "the water is cold" is true, then "my shower is bad" is true.

An implication is in fact a mapping

$$\{0,1\} \times \{0,1\} \to \{0,1\}.$$

In fuzzy logic, to interpret such implications, we consider "the water is cold" and "my shower is bad" as fuzzy sets and we decide using an **implication** function

$$[0,1] \times [0,1] \rightarrow [0,1].$$

This is sometimes called approximate reasoning.

Implication

An **implication** is a function $I:[0,1]\times[0,1]\to[0,1]$ satisfying the following conditions for all $x,y,z\in[0,1]$:

- 1. If $x \leq z$, then $I(x, y) \geq I(z, y)$;
- 2. if $y \le z$, then $I(x, y) \le I(x, z)$;
- 3. I(0, y) = 1;
- 4. I(x,1) = x;
- 5. I(1,0) = 0.

Examples:

- (i) Mamdani: $I(x,y) = \min\{x,y\}$ (this fails item 3, but usually in knowledge systems we are not interested in rules where the antecedent part is false),
- (ii) Willmott: $I(x, y) = \max\{1 x, \min\{x, y\}\},\$
- (iii) ...

Standard fuzzy logic controllers

A controller measures some inputs and gives an output following some rules.

For instance, we have the following set of rules:

- r1. If "water is cold", then "shower is bad".
- r2. If "water is tepid", then "shower is good".
- r3. If "water is hot", then "shower is bad".

The fuzzy sets "shower is bad" and "shower is good" are subsets of Y = [0, 100], measuring how good a shower is.

- 1. Measure the input variables, i.e., the temperature $x_0 \in X$.
- 2. Transform the measured values into fuzzy sets: we have fuzzy sets with constant membership functions $\mu_{cold}(x_0)$, $\mu_{tepid}(x_0)$, and $\mu_{hot}(x_0)$.
- 3. Apply all the rules: we obtain 3 control fuzzy sets
 - $\mu_{r_1}(y) = I(\mu_{cold}(x_0), \mu_{bad}(y)),$
 - $\mu_{r_2}(y) = I(\mu_{tepid}(x_0), \mu_{good}(y)),$
 - $\mu_{r_3}(y) = I(\mu_{hot}(x_0), \mu_{bad}(y)).$
- 4. Aggregate the control fuzzy sets into one fuzzy set C.
- 5. Defuzzify C to obtain the output value $c \in Y$.

Standard fuzzy logic controllers

For each step, there are many possible choices:

- transformation to fuzzy sets (and application of operators to construct the antecedent of all implications in the rules);
- implication itself;
- aggregation;
- defuzzification.

A usual choice is Gödel t-norm and Mamdani for implication, union for aggregation, and a defuzzification by center of gravity:

$$y_0 = \frac{\int_Y y \mu_C(y) dy}{\int_Y \mu_C(y) dy}$$

(or replace by sums if Y is discrete).