MIE-MPI, Mathematics for Informatics - Homework no. 1

Instructions:

- You should try to solve all the exercises. Even if you do not do all the exercises, you can get all the points.
- Presentation is taken into account; correct results themselves are not enough. The reasoning on how the result was found should be clearly visible.
- Comment your calculations in a reasonable way: the reader should understand what you do and why. The solution should be "possible to read", not "needed to decrypt".
- Do not answer unasked questions. It is important to know what is needed to solve the problem and what is not needed.
- If you use a result from another source than the lectures and tutorials, cite your source properly (do not forget to cite used software if applicable).
- The homework is to be send either by email at francesco.dolce@fjfi.cvut.cz or via MicrosoftTeams, before Wednesday October 28th, 2020

Exercice 1. Find all minima, maxima and saddle points of the following functions:
(a) $f(x, y)=x^{4}+y^{4}+4 x y$,
(b) $f(x, y)=(x+1)^{2}+y^{2}-27$,
(c) $f(x, y)=x^{2}+y^{2}-4 \ln x-8 \ln y$,
(d) $f(x, y, z)=-x^{3}+y^{2}-z^{5}$,
(e) $f(x, y)=(x+y-1)^{2}$.

Exercice 2. Find minima, maxima and saddle points of the following functions:
(a) $f(x, y)=x^{2}-2 y^{2}-6 y x+3$ subject to $x+y=2$,
(b) $f(x, y)=x-y^{2}$ subject to $\frac{x^{2}}{4}+y^{2}=1$,
(c) $f(x, y, z)=x z+y z+z$ subject to $x y z=1$.

Exercice 3. Calculate

$$
\iint_{D}\left(x^{3} y+x^{2} y^{2}-1\right) \mathrm{d} x \mathrm{~d} y
$$

where D is equal to:
(a) $[0,2] \times[0,1]$;
(b) the triangle with vertices $(0,1),(1,1)$ and $(0,3)$;
(c) the bounded subset of \mathbb{R}^{2} which is delimited by the x-axis, the curve having equation $y=2 x-x^{2}$ and the line having equation $y=4 x-4$.

