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@ Multivariate optimization:

Gradient

Tangent plane

Critical points on two or more variables
Hessian (matrix)

Francesco Dolce (CTU i MIE-MPI- Lecture 2



The gradient of a function f(x, X2, ..., X,) at the (n-dimensional) point b € R" is
the n-dimensional vector function V£ (b) defined by

Vi(6) = (G 6) B (1))
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Gradient of a function
The gradient of a function f(xi, x2, ..., X,) at the (n-dimensional) point b € R" is

the n-dimensional vector function V£ (b) defined by

V(b) = (aaxfl(b), i(b),...,i(b)) .

Find the gradient of the function f(x,y) = x> + xy + y? at the point (1,1). I
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Gradient of a function
The gradient of a function f(xi, x2, ..., X,) at the (n-dimensional) point b € R" is
the n-dimensional vector function V£ (b) defined by

V(b) = (aa;(b), i(b),...,i(b)) .

Find the gradient of the function f(x,y) = x> + xy + y? at the point (1,1). I

Geometrical meaning: the gradient points is the direction of the greatest rate of
increase of the function. Its magnitude equals the rate of increase.
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We saw that the partial derivative with respect to x at the point a is equal to the
slope of tangent line at this point in direction parallel to the x-axis.
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Gradient and the directional derivative

We saw that the partial derivative with respect to x at the point a is equal to the
slope of tangent line at this point in direction parallel to the x-axis.

If we are on the graph of the fonction f(x,y) = x*> 4+ xy + y? at the point (1,1)
and we start moving in the direction parallel to the x-axis, i.e., in the direction of
the vector (1,0), we will go “uphill” under the angle arctan 3 since

of

S (L1)=2+1=3
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Gradient and the directional derivative

We saw that the partial derivative with respect to x at the point a is equal to the
slope of tangent line at this point in direction parallel to the x-axis.

If we are on the graph of the fonction f(x,y) = x*> 4+ xy + y? at the point (1,1)
and we start moving in the direction parallel to the x-axis, i.e., in the direction of
the vector (1,0), we will go “uphill” under the angle arctan 3 since

of

(L) =2+1=3

What will be the slope if we move in the direction of a general vector v?
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Gradient and the directional derivative

We saw that the partial derivative with respect to x at the point a is equal to the
slope of tangent line at this point in direction parallel to the x-axis.

Example

If we are on the graph of the fonction f(x,y) = x*> 4+ xy + y? at the point (1,1)
and we start moving in the direction parallel to the x-axis, i.e., in the direction of
the vector (1,0), we will go “uphill” under the angle arctan 3 since

of

(L) =2+1=3

What will be the slope if we move in the direction of a general vector v?

Given a function f(x) : R" — R, a point a € R" and a unit vector V € R", the
derivative in the direction of the vector v is the dot product of the gradient and Vv,
i.e, Vf(ay,az,...,a,) " V.
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Tangent plane

The tangent plane to a function f(x,y) at the point (xo, o) is a 2-dimensional
plane that “touches” the graph of the function at (xo, yo).
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Tangent plane

The tangent plane to a function f(x,y) at the point (xo, o) is a 2-dimensional
plane that “touches” the graph of the function at (xo, yo). Its equation is

of

of
z= a(xo,}/o) “(x —x0) + E(Xoa}/o) “(y =) + f(x0,¥0)-
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Tangent plane

The tangent plane to a function f(x,y) at the point (xo, o) is a 2-dimensional
plane that “touches” the graph of the function at (xo, yo). Its equation is

of of
z= a(xov)/o) “(x —x0) + @(XOJO) “(y =) + f(x0,¥0)-

Find the tangent plane to f(x,y) = x*> + xy + y* at (1,1).
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Critical points

@ In the one dimensional case the critical points are those points where the
tangent line is parallel to the x-axis, i.e., points where f’(x) =0, or where
the derivative does not exist.
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Critical points

@ In the one dimensional case the critical points are those points where the
tangent line is parallel to the x-axis, i.e., points where f'(x) =0, or where
the derivative does not exist.

@ The critical points of a two variable function are those points where the
tangent plane is parallel to the plane given by the x-axis and the y-axis or
where the gradient does not exist.
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Critical points — two variables

@ In the one dimensional case the critical points are those points where the
tangent line is parallel to the x-axis, i.e., points where f'(x) = 0, or where
the derivative does not exist.

@ The critical points of a two variable function are those points where the
tangent plane is parallel to the plane given by the x-axis and the y-axis or
where the gradient does not exist.

The first class of these points can be found as a solution of
Vf(x,y) =(0,0)
which leads to the system of two equations for two variables

orf
7(Xv.)/) =0

oF

@(va) =0
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Critical points

For an n-variable function f(xy, x2, ..., X,) the situation is analogous:
The critical points of f(x1, o, ...,x,) are points satisfying the equation

Vi(xi,x2, ..., %) =0

i.e., points satisfying the system of n equations for n variables

(
ﬂ(xl,xz,...,x,,) =0
Ox
a—fl(x X; X)) = 0
8X2 15, X255 Xn - 7
of
8Xn(X17X27"'aXn) =0

or where the gradient does not exist.
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Critical points

For an n-variable function f(xy, x2, ..., X,) the situation is analogous:
The critical points of f(x1, o, ...,x,) are points satisfying the equation

Vi(xi,x2, ..., %) =0

i.e., points satisfying the system of n equations for n variables

(
ﬂ(xl,xz,...,x,,) =0
Ox
a—fl(x X; X)) = 0
8X2 15, X255 Xn - 7
of
8Xn(X17X27"'aXn) =0

or where the gradient does not exist.
(Instead of a tangent plane, we have a tangent hyperplane.)
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Critical points — example

Find all critical points of

2 2 2
f(x1, X2, X3) = x1X3 + Xi — X2 + XoX3 + X3 + 3x3,
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Critical points — example

Find all critical points of

2 2 2
f(x1, X2, X3) = x1X3 + Xi — X2 + XoX3 + X3 + 3x3,

We get
Vi(x1,x,x3) = (x3 4+ 2x1, —1 4+ x3 + 2x2, x1 + X2 + 6x3)

which always exists.
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Critical points — example

Find all critical points of

2 2 2
f(x1, X2, X3) = x1X3 + Xi — X2 + XoX3 + X3 + 3x3,

We get
Vi(x1,x,x3) = (x3 4+ 2x1, —1 4+ x3 + 2x2, x1 + X2 + 6x3)

which always exists. Thus the critical points are the solution of the system
X3 + 2X1 = 0

—14+x3+2x = 0 ,
x1 + X2 + 6x3 0

which, using the standard procedure for a system of linear equations, gives us the

only solution i E _—1
y 20°20° 10 )
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Type of a critical point (1 of 4)

In the one dimensional case, we can use the second derivative to decide the type
of the critical point.

Let xq be a critical point of a function f(x) such that f'(xg) = 0 and " (xg) exists.
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Type of a critical point (1 of 4)

In the one dimensional case, we can use the second derivative to decide the type
of the critical point.

Let xq be a critical point of a function f(x) such that f'(xg) = 0 and " (xg) exists.

e Iff""(xg) > 0, then the function is convex at xo, and xg is a point of a (strict)
minimum.

Francesco Dolce (CTU in Prague) MIE-MPI- Lecture 2 Fall 2020/2021 9/14



Type of a critical point (1 of 4)

In the one dimensional case, we can use the second derivative to decide the type
of the critical point.

Let xq be a critical point of a function f(x) such that f'(xg) = 0 and " (xg) exists.

e Iff""(xg) > 0, then the function is convex at xo, and xg is a point of a (strict)
minimum.

e If f"(xg) < 0, then the function is concave at xy, and xq is a point of a
(strict) maximum.
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Type of a critical point (1 of 4)

In the one dimensional case, we can use the second derivative to decide the type
of the critical point.

Let xq be a critical point of a function f(x) such that f'(xg) = 0 and " (xg) exists.

e Iff""(xg) > 0, then the function is convex at xo, and xg is a point of a (strict)
minimum.

e If f"(xg) < 0, then the function is concave at xy, and xq is a point of a
(strict) maximum.

e If f"(xg) = 0, then xo may be a minimum, maximum, inflection point, ...
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Type of a critical point (1 of 4)

In the one dimensional case, we can use the second derivative to decide the type
of the critical point.

Let xq be a critical point of a function f(x) such that f'(xg) = 0 and " (xg) exists.

e Iff""(xg) > 0, then the function is convex at xo, and xg is a point of a (strict)
minimum.

e If f"(xg) < 0, then the function is concave at xy, and xq is a point of a
(strict) maximum.

e If f"(xg) = 0, then xo may be a minimum, maximum, inflection point, ...

Do we have something similar for more variables? What is the second derivative?
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Hessian

Type of a critical point (2 of 4)

The analogue of the second derivative is the following.

For a function f(x1,x2,...,x,) we define the Hessian matrix as

*f *f
@(X]_,...,Xn) W(X]"...’Xn)
1 n
V2 (X1, X0 .o oy Xn) = : .
*f *f
3X,,3X1(X1"“’Xn) a—xg(xl,...,xn)

assuming that all the derivatives exist.
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We would like to construct rules like “If f”(xo) > 0, then the critical point xg is
the point of strict minimum”.

But to say that the matrix is “positive” is problematic ... Let us use a different
notion.
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Hessian

Type of a critical point (3 of 4)

We would like to construct rules like “If f”/(xg) > 0, then the critical point xp is
the point of strict minimum”.

But to say that the matrix is “positive” is problematic ... Let us use a different
notion.

Definition

A matrix A € R"" is

@ positively definite if for all non-zero vectors a € R" it holds that aAa’ > 0;
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Hessian

Type of a critical point (3 of 4)

We would like to construct rules like “If f”/(xg) > 0, then the critical point xp is
the point of strict minimum”.

But to say that the matrix is “positive” is problematic ... Let us use a different
notion.
A matrix A€ R™" is

@ positively definite if for all non-zero vectors a € R" it holds that aAa’ > 0;

@ positively semidefinite if for all vectors a € R" it holds that aAa” > 0 and the
equality is true for at least one non-zero vector b € R";
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Hessian

Type of a critical point (3 of 4)

We would like to construct rules like “If f”/(xg) > 0, then the critical point xp is
the point of strict minimum”.

But to say that the matrix is “positive” is problematic ... Let us use a different
notion.

Definition

A matrix A€ R™" is
positively definite if for all non-zero vectors a € R" it holds that aAa’ >0;

positively semidefinite if for all vectors a € R" it holds that aAa” > 0 and the
equality is true for at least one non-zero vector b € R";

negatively definite if for all non-zero vectors a € R" it holds that aAa’ < 0;

e ee

negatively semidefinite if for all vectors a € R" it holds that aAa’ < 0 and the
equality is true for at least one non-zero vector b € R";
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Type of a critical point (3 of 4)

We would like to construct rules like “If f”/(xg) > 0, then the critical point xp is
the point of strict minimum”.

But to say that the matrix is “positive” is problematic ... Let us use a different
notion.

Definition

A matrix A€ R™" is
positively definite if for all non-zero vectors a € R" it holds that aAa’ >0;

positively semidefinite if for all vectors a € R" it holds that aAa” > 0 and the
equality is true for at least one non-zero vector b € R";

negatively definite if for all non-zero vectors a € R" it holds that aAa’ < 0;

negatively semidefinite if for all vectors a € R" it holds that aAa’ < 0 and the
equality is true for at least one non-zero vector b € R";

© 6e6e ee

indefinite otherwise.
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Type of a critical point (4 of 4)

If f : R"™ — R has all second partial derivative continuous at a critical point
b e R", then

@ if V?f(b) is positively definite, then b is a point of strict local minimum;

@ if V?f(b) is negatively definite, then b is a point of strict local maximum;
@ if V?f(b) is indefinite, then b is a saddle point.
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Sylvester’s criterion on definiteness

For an n x n dimensional symmetric matrix A we define the principal minors:
@ Mj is the upper left 1-by-1 corner of A,
@ M, is the upper left 2-by-2 corner of A,
(]
(]

M, is the upper left n-by-n corner of A.

Let A € R™" be a symmetric matrix.

e A is positively definite if and only if the determinants of all principal minors
are positive.

o A is negatively definite if and only if the determinant of M; is negative for
odd i and positive for even i.
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Example

Find all minima and maxima of the function

3x* —4x3 —12x2 + 18
12(1 1 4y?)

f(x,y) =
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Example

Find all minima and maxima of the function

3x* —4x3 —12x2 + 18

foay) = 12(1 + 4y2)

Solution: The critical points are (—1,0), (0,0) and (2,0); they are a saddle
point, a point of maximum and a point of minimum, respectively.

AT
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