MIE-MPI: Tutorial 4

created: October 16, 2020, 09:03

4.1 Algebra

Exercise 4.1. Find out which of the following groupoids are groups and which are Abelian groups.

1. $(\mathbb{N},+)$, where \mathbb{N} is the set of natural (non-negative) integers;
2. $(\mathbb{Z},+)$, where \mathbb{Z} is the set of integers;
3. ($\mathbb{R}, \cdot)$, where \mathbb{R} is the set of real numbers;
4. $(\mathbb{C},+)$, where \mathbb{C} is the set of complex numbers.

Exercise 4.2. Which of following couples form a group?

1. $\left(\mathbb{Z}^{-},+\right)$, where \mathbb{Z}^{-}is the set of negative integers;
2. $(\mathbb{Q},+)$, where \mathbb{Q} is the set of rational numbers;
3. $\left(\mathbb{Q}_{0}^{+},+\right)$, where \mathbb{Q}_{0}^{+}is the set of non-negative rational numbers;
4. $(\{-1,1\},+)$;
5. $(\{-1,1\}, \cdot)$.

Exercise 4.3. Which of the following sets with the operation \circ defined for all a, b by

$$
a \circ b=a^{b}
$$

form a groupoid/semigroup/group/Abelian group?

1. (\mathbb{Q}, \circ);
2. (\mathbb{N}, \circ);
3. $(\{-1,1\}, \circ)$.

Exercise 4.4. Which of the following sets of complex square matrices create a group with the common matrix multiplication?

1. real matrices;
2. regular matrices;
3. regular diagonal matrices;
4. upper (lower) regular triangular matrices.

Exercise 4.5. Let us consider the set $M=\mathbb{Z} \times \mathbb{Z} \times\{1,-1\}$ and the operation \otimes on it defined by:

$$
\begin{aligned}
\left(k_{1}, \ell_{1}, 1\right) \otimes\left(k_{2}, \ell_{2}, \varepsilon\right) & =\left(k_{1}+k_{2}, \ell_{1}+\ell_{2}, \varepsilon\right) \\
\left(k_{1}, \ell_{2},-1\right) \otimes\left(k_{2}, \ell_{2}, \varepsilon\right) & =\left(k_{1}+k_{2}, \ell_{1}+\ell_{2},-\varepsilon\right)
\end{aligned}
$$

for $\varepsilon \in\{1,-1\}$. Is (M, \otimes) a group?
Exercise 4.6. Let us define the operations Π and \triangle on \mathbb{R} as:

$$
a \sqcap b=a+b+1 \quad \text { and } \quad a \triangle b=a+b+a b
$$

for arbitrary $a, b \in \mathbb{R}$.
Prove that

- (\mathbb{R}, \sqcap) is an Abelian group;
- (\mathbb{R}, \triangle) is not a group.

Exercise 4.7. Let ρ be a plane. For arbitrary points $A, B \in \rho$ let $A \star B$ be the central point of the segment $A B$. Is (ρ, \star) a group?

Exercise 4.8. Let for arbitrary $a, b \in \mathbb{N}$ be $a \circ b=a^{b}$ (see Exercise 4.3). Find all triples $a, b, c \in \mathbb{N}$ for which we have $(a \circ b) \circ c=a \circ(b \circ c)$.

Exercise 4.9. Let us consider the set \mathbb{N} and the operation \wedge such that for arbitrary $a, b \in \mathbb{N}$ we have $a \wedge b$ equal to the greatest common divisor of a, b. Is (N, \wedge) a group?

Exercise 4.10. Decide whether following table is Cayley table of a group?

	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

How can we recognize that it is Cayley table of an Abelian group?

