MIE-MPI: Tutorial 6

created: November 4, 2020, 16:28

6.1 Homomorphisms and isomorphisms

Exercise 6.1. Which of the following mappings are homomorphisms and which are isomorphisms from the given groups to the given groups?
(a) $\varphi(n)=3 n+2$, from the group $(\mathbb{Z},+)$ to $(\mathbb{R},+)$;
(b) $\varphi(x)=2^{x}$, from the group $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+}, \cdot\right)$;
(c) $\varphi(A)=A_{1,1}$, from the group of $n \times n$ matrices with the matrix addition (element-wise), denoted $(M,+)$, to $(\mathbb{R},+)$;
(d) $\varphi(A)=A_{1,1}$, from the group of $n \times n$ regular with the matrix multiplication, denoted $\left(M_{\mathrm{reg}}, \cdot\right)$, to $(\mathbb{R} \backslash\{0\}, \cdot)$.

Exercise 6.2. Find some homomorphism from $\left(M_{\mathrm{reg}}, \cdot\right)$ to $(\mathbb{R} \backslash\{0\}, \cdot)$.
Exercise 6.3. Is \mathbb{Z}_{7}^{\times}isomorphic with \mathbb{Z}_{6}^{+}? If yes, find an isomorphism.
Exercise 6.4. How to find an isomorphism of groups \mathbb{Z}_{p}^{\times}and \mathbb{Z}_{p-1}^{+}in the general case? How many different isomorphisms exists?

6.2 Permutations

Exercise 6.5. Let us consider the two following permutations in S_{5} :

$$
f=(24513) \quad \text { and } \quad g=(54321) .
$$

(a) Find $g \circ f$,
(b) What is the order of the subgroup $\langle f\rangle$ of S_{5} ? And the order of $\langle g\rangle$?
(c) Find $f^{37} \circ g^{42}$.

6.3 Discrete logarithm

Exercise 6.6. Solve

$$
5^{x} \equiv 12 \quad(\bmod 23)
$$

Exercise 6.7. Alice wants to send a secrete message to Bob during the MPI course1. So she sends a small paper via her classmates saying this:

Hi Bobie, I am gonna send you a secrete message using Diffie-Hellman protocol. My public key is $(29,8)$ and the encrypted stuff is 24 .

Bob's answer is:
Cool Alice! Mine is 15 .
Alice:
Super cool! Assuming that our shared secret number is n, let us meet on ($n-2$ mod 7)-th day of the next week at $n-7$ o'clock in the cemetery in front of the tomb number $5 n+6$. See ya!

Where and when are they going to meet?

[^0]
[^0]: ${ }^{1}$ Forgetting that the professor knows the trick too.

