NIE-MPI, Mathematics for Informatics - Homework no. 2

Instructions:

- You should try to solve all the exercises. Even if you do not do all the exercises, you can get all the points.
- Presentation is taken into account; correct results themselves are not enough. The reasoning on how the result was found should be clearly visible.
- Comment your calculations in a reasonable way: the reader should understand what you do and why. The solution should be "possible to read", not "needed to decrypt".
- Do not answer unasked questions. It is important to know what is needed to solve the problem and what is not needed.
- If you use a result from another source than the lectures and tutorials, cite your source properly (do not forget to cite used software if applicable).
- The homework should be given by hand or sent by email at dolcefra@fit.cvut.cz before the beginning of the lecture on Wednesday December 8th, 2021.

Exercise 1. Find a generator and all subgroups of \mathbb{Z}_{23}^{\times}. How many distinct generators are there? Say if \mathbb{Z}_{23}^{\times}contains a subgroup isomorphic to the following groups:

- \mathbb{Z}_{2}^{+},
- \mathbb{Z}_{4}^{+},
- \mathbb{Z}_{11}^{+}.
- \mathbb{Z}_{15}^{+}.
- \mathbb{Z}_{22}^{+}.

If yes, find an isomorphism. If not explain why such an isomorphism can not exist.

Exercise 2. Is the set $M=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ with classical number addition and multiplication a field? Prove your answer. If it is a field, find another field to which it is isomorphic and give the isomorphism.

Exercise 3. Let f and g be two permutations over 8 elements, where

$$
f=(45628371) \text { and } g=(87654321) .
$$

(a) Find $f \circ g$ and $g \circ f$.
(b) Find $\langle f\rangle$ and $\langle g\rangle$, i.e., the smallest subgroups of S_{8} (group of all permutations of 8 elements) which contain respectively the permutation f and the permutation g.
(c) Find $f^{91} \circ g^{91}$.
(d) What is the order of $\langle g \circ f\rangle$?.

Exercise 4. Let us consider the field $G F\left(2^{4}\right)$ with multiplication modulo $x^{4}+x^{3}+1$. Find
(a) all y such that $1010(y+0011)=1111$,
(b) all y such that $y^{2}=0101$,
(c) all y such that $y^{33}=0101$.

