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o Eigenvalues and eigenvectors

o Power methods
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Eigenvalues and eigenvectors

A complex number \ is called an eigenvalue of the matric M € C™", whenever
there exists a non-zero vector u € C" such that

Mu = \u.

The vector u is called an eigenvector of the matrix M relative to the eigenvalue \.
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Eigenvalues and eigenvectors

A complex number \ is called an eigenvalue of the matric M € C™", whenever
there exists a non-zero vector u € C" such that

Mu = \u.

The vector u is called an eigenvector of the matrix M relative to the eigenvalue \.

The set of eigenvectors of M (relative to the eigenvalues A and to the zero vector)
form a base of the subspace ker(M — /).
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Eigenvalues and eigenvectors

A complex number A is called an eigenvalue of the matric M € C™", whenever
there exists a non-zero vector u € C" such that

Mu = A\u.

The vector u is called an eigenvector of the matrix M relative to the eigenvalue A.

The set of eigenvectors of M (relative to the eigenvalues A and to the zero vector)
form a base of the subspace ker(M — \/).

The eigenvalues of the matrix M are the roots of the characteristic polynomial
of the M, that is the polynomial

pm(A) :=det(M — Al).

Therefore, each matrix M € C™" has at most n different complex eigenvalues.
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Eigenvalues and eig

A matrix M € C™" is diagonalizable when there exist a diagonal matrix D € C™"
and a regular matrix P € C™" such that

M = PDP~*.

where D = diag(Ag, ..., An).
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Eigenvalues and eigenvectors

A matrix M € C™" is diagonalizable when there exist a diagonal matrix D € C™"
and a regular matrix P € C™" such that

M = PDP~*.

where D = diag(Ag, ..., An).
Remind: M* = pD¥p—1,

Remark:

@ The columns of the matrix P are the eigenvectors of M. (These eigenvectors
form a basis of C".)

@ The elements of the diagonal matrix D are the eigenvalues of M (with their
multiplicity).

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10



Eigenvalues and eigenvectors

Let M € C™". Suppose it is diagonalizable and we can order its eigenvalues as
follows
|)\1| > |>\2| > ... 2> |>\n|
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Eigenvalues and eigenvectors

Let M € C™". Suppose it is diagonalizable and we can order its eigenvalues as

follows
|)\1| > |>\2| > ... > |>\n|

We are looking for the eigenvector of the eigenvalue \;, the so-called dominant
eigenvalue. It is a vector u; such that

Mu1 = )\1U1.
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Eigenvalues and eigenvectors

Let M € C™". Suppose it is diagonalizable and we can order its eigenvalues as

follows
|)\1| > |>\2| > ... > |>\n|

We are looking for the eigenvector of the eigenvalue \;, the so-called dominant
eigenvalue. It is a vector u; such that

Mu1 = )\1U1.

In general, the matrix need not be diagonalizable, but the ideas would be more
complicated (actually, we only require to have one eigenvalue which is the greatest
in absolute value).
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Eigenvalues play an importan role in several applications:

o Classification of conics and quadratic forms (geometry).

@ Quantum computation, quantum mechanics, asymptotic behaviour of
dynamical systems (physics).

e PCA, or Principal Component Analysis (big data).

@ Recognition of 2D and 3D objects using spectral methods (Al).
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Applications
Applications
Eigenvalues play an importan role in several applications:

o Classification of conics and quadratic forms (geometry).

@ Quantum computation, quantum mechanics, asymptotic behaviour of
dynamical systems (physics).

PCA, or Principal Component Analysis (big data).

Recognition of 2D and 3D objects using spectral methods (Al).
@ More practical example: PageRank mesures a relative importance of WWW
documents by ispecting links between them.

o lts values is in fact an eigenvector of the dominant eigenvalues of a modified
adjacency matrix of these links. This matrix satisfies requirement of our
problem.

o PageRank is calculated using power methods.
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In its basic variant, the power method is used to find the dominant eigenvalue of a
matrix,
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In its basic variant, the power method is used to find the dominant eigenvalue of a
matrix,

Given a matrix M € C™" let us consider a regular matrix P € C™" such that
M = PDP~!
where D = diag(A1, ..., A,). Let also suppose that the values are ordered:

Al > [A2] = - > Al
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Power method

In its basic variant, the power method is used to find the dominant eigenvalue of a
matrix,

Given a matrix M € C™" let us consider a regular matrix P € C™" such that
M = PDP~!
where D = diag(A1, ..., A,). Let also suppose that the values are ordered:

Al > [A2] = - > Al

Note: We suppose that the dominant eigenvalue A; is not degenerate (i.e., that
the correspoinding eigenspace has dimension 1).
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We are looking for an eigenvector associated to the eigenvalue A1, that is a
non-zero vector u; such that

MU1 = )\1U1.
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We are looking for an eigenvector associated to the eigenvalue A1, that is a
non-zero vector u; such that

/\/Iu1 = )\1U1.

The power method is an iterative method. We will construct a sequence (xx)«
as follows: xp is chosen randomly and the next terms are determined by

Xk = Mx,_1 for k > 0.

Equivalently, we have
X = MkXO k € Np.
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If M is regular, thus diagonalizable, there exist eigenvectors {uy, ua, ..., Us},
which form a basis of C".

If M is not regular, then we need to complete the set of eigenvectors by a basis of
the kernel of M.
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If M is regular, thus diagonalizable, there exist eigenvectors {uy, ua, ..., Us},
which form a basis of C™*.

If M is not regular, then we need to complete the set of eigenvectors by a basis of
the kernel of M.

The vector xg can be written as xg = ajuy + -+ + aplp,.
Suppose that a; # 0.
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If M is regular, thus diagonalizable, there exist eigenvectors {uy, ua, ..., Us},
which form a basis of C™*.

If M is not regular, then we need to complete the set of eigenvectors by a basis of
the kernel of M.

The vector xg can be written as xg = ajuy + -+ + aplp,.
Suppose that a; # 0.

Coefficients «; can be absorbed by the eigenvectors (uj = a;u;) and we have

/ /
Xo = Uy + -+ u,
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The recurrent definition of x, implies

Xk:MkXO
= M uy + -+ M¥u,
= /\Il‘ul —|—---+)\5u,,.
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The recurrent definition of x, implies

Xk:MkXO
= M uy + -+ M¥u,
= /\’l‘ul —|—---+)\5u,,.

The last equality gives

A\ M)
Xk = \K u1+<)\—j> U2+~--+(>\—1> Up
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The recurrent definition of x, implies

Xk:MkXO
= MkU1—|—"'+MkU,,
= /\’l‘ul +---+)\5u,,.

The last equality gives
A\ A\ K
sz)\11(<ul+()\—j> U2+~-.+(>\—'17> Un)-

We rewrite it as

X = )\,1( (u1 +€k) .
Aj
M

Since for all j > 1 we have < 1, then lim g, =0.
k—r+00
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X
The sequence <>\—i> “converges” to the eigenvector u; of the dominant
1/ k

eigenvalues.
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Power method principle (3/4)

The sequence (Xk

)\k) “converges” to the eigenvector u; of the dominant
1/ k

eigenvalues.

We have ||xk|| = +o00. Thus we need to control the norm: we may set it to 1 at

Tl

each step (by normalizing, i.e., considering yx =

To have convergence also for the case A\; < 0, we need to pick the right direction
for the eigenvector so that it does not oscillate. We may do this by setting the
largest entry in absolute value to 1 (and thus use the maximum norm).

)
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The speed of convergence is given by )\ since ||ex|| = O ( o™
1




How to find the dominant eigenvalue?

If ¢ is a linear mapping ¢ : C™! — C such that ¢(uy) # 0, then

eas1) e (M +eig1)) M (o(un) + (ent))

00) | o (mte)) | Me(w)+ o) Ay for k — +oo.

The mapping ¢ can be set to the mapping defined for all x € C™! as (x) = X(1)
where x(y) is the first component x (if p(u1) # 0)).
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Power method - demonstration in R™"

2

Let us find the dominant eigenvector of M = <1 4

conditions of power method.

The exact solution is u; = (1,vV2 +1) = ﬂl+ 1(\6 —1,1), with eigenvalue
A =3+ V2.
[k | Xk | % = Xe—1lloo

0 (1.0,1.0) -

1 | (0.59999999999999998, 1.0) 0.4

2 | (0.47826086956521746,1.0) | 0.121739130435

3 | (0.43689320388349517,1.0) | 0.0413676656817

4 | (0.42231947483588622,1.0) | 0.0145737290476

5 | (0.4171202375061851,1.0) | 0.0051992373297

1>, which satisfies the

In the calculations, the maximum entry in absolute value is set to 1 at each step

and the convergence criterion ||Xx — Xk_1/|0 < 1072
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Let us consider the matrix

36408 4- 16769i —5412 — 2481/ 107256 + 49397/ —492 — 214/

—10656 — 5164i 1584 + 762/  —31392 — 15210/ 144 4 66/

—12876 — 5954; 1914 +881i  —37932 —17539; 1744 76i
4329 — 262i —643 4 39/ 12753 — 771 —58 + 6/

M =

The eigenvalues are —2i, —i, 3i/2 and 3/2.
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Power method - demonstration in C™" (1/2)

Let us consider the matrix

36408 + 16769/ —5412 — 2481/ 107256 + 49397/ —492 —214i

—10656 — 5164; 1584 +762i  —31392 — 15210/ 144 4 66i

—12876 — 5954; 1914 +881i  —37932 —17539; 1744 76i
4329 — 262i —643 4 39/ 12753 — 771 —58 + 6/

M =

The eigenvalues are —2i, —i, 3i/2 and 3/2.

Let us fix the accuracy at ¢ = 107°. The last 7 iterations of /\gk) are:

0.0000477588150960872 - 1.99991424541241 |
-0.0000479821875446196 - 1.99998019901599 i
-0.0000272650944159076 - 2.00002375338328 i
0.0000271520045767515 - 2.00002973125038 i
0.0000154506695115737 - 1.99997272532314 |
-0.0000152424622193764 - 1.99999349337182 i
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