Mathematics for Informatics

Subgroups, groups generated by a set, cyclic groups (lecture 5 of 12)

Francesco Dolce

dolcefra@fit.cvut.cz
Czech Technical University in Prague

Fall 2021/2022
created: October 20, 2021, 11:02

Outline

- Reminder and motivation
- Subgroups
- Groups generated by a set
- Cyclic groups

Reminder of the last lecture

Hierarchy of structures of type "a set and a binary operation"

Example (1/4)

Example

Consider the set $\mathbb{Z}_{12}=\{0,1,2, \ldots, 11\}$ with the addition $\bmod 12$.

- the set \mathbb{Z}_{12} is closed under this operation, i.e., it is a groupoid;

Example (1/4)

Example

Consider the set $\mathbb{Z}_{12}=\{0,1,2, \ldots, 11\}$ with the addition $\bmod 12$.

- the set \mathbb{Z}_{12} is closed under this operation, i.e., it is a groupoid;
- the operation is associative, so it is a semigroup;

Example (1/4)

Example

Consider the set $\mathbb{Z}_{12}=\{0,1,2, \ldots, 11\}$ with the addition $\bmod 12$.

- the set \mathbb{Z}_{12} is closed under this operation, i.e., it is a groupoid;
- the operation is associative, so it is a semigroup;
- the number 0 is the neutral element, so it is a monoid;

Example (1/4)

Example

Consider the set $\mathbb{Z}_{12}=\{0,1,2, \ldots, 11\}$ with the addition $\bmod 12$.

- the set \mathbb{Z}_{12} is closed under this operation, i.e., it is a groupoid;
- the operation is associative, so it is a semigroup;
- the number 0 is the neutral element, so it is a monoid;
- the inverse of $k \neq 0$ is $12-k$ and the inverse of 0 is 0 , so it is a group;

Example (1/4)

Example

Consider the set $\mathbb{Z}_{12}=\{0,1,2, \ldots, 11\}$ with the addition $\bmod 12$.

- the set \mathbb{Z}_{12} is closed under this operation, i.e., it is a groupoid;
- the operation is associative, so it is a semigroup;
- the number 0 is the neutral element, so it is a monoid;
- the inverse of $k \neq 0$ is $12-k$ and the inverse of 0 is 0 , so it is a group;
- the operation is commutative, thus we have an Abelian group.

Example (1/4)

Example

Consider the set $\mathbb{Z}_{12}=\{0,1,2, \ldots, 11\}$ with the addition $\bmod 12$.

- the set \mathbb{Z}_{12} is closed under this operation, i.e., it is a groupoid;
- the operation is associative, so it is a semigroup;
- the number 0 is the neutral element, so it is a monoid;
- the inverse of $k \neq 0$ is $12-k$ and the inverse of 0 is 0 , so it is a group;
- the operation is commutative, thus we have an Abelian group.

Let $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ be the set of the residue classes modulo n.
The group $\left(\mathbb{Z}_{n},+_{(\bmod n)}\right)$ is the additive group modulo n; it is denoted by \mathbb{Z}_{n}^{+}.

Example (2/4)

Question: Which other set M forms a group with the addition (mod 12$)$?

Example (2/4)

Question: Which other set M forms a group with the addition (mod 12)? In order for the operation to be well defined, we must have $M \subset \mathbb{Z}_{12}$: Question (refined): Which subset of \mathbb{Z}_{12} forms a group with the addition $(\bmod 12)$?

Example $(2 / 4)$

Question: Which other set M forms a group with the addition (mod 12)?
In order for the operation to be well defined, we must have $M \subset \mathbb{Z}_{12}$:
Question (refined): Which subset of \mathbb{Z}_{12} forms a group with the addition $(\bmod 12)$?

Answer: There are quite a lot of them. To find out how to discover them, let us ask this subquestion:

Sub-question: Which is the smallest subset of \mathbb{Z}_{12} that forms a group with addition (mod 12) and contains the number 2 ?

Example (3/4)

We are looking for a set $M \subset \mathbb{Z}_{12}$ such that $2 \in M$ and $\left(M,+_{(\bmod 12)}\right)$ is a group:

Example (3/4)

We are looking for a set $M \subset \mathbb{Z}_{12}$ such that $2 \in M$ and $\left(M,+_{(\bmod 12)}\right)$ is a group:

- M must be closed under addition mod 12 :
- it must contain $2+2=\mathbf{4}, 2+4=\mathbf{6}, 4+6=\mathbf{1 0}, \ldots$

Example (3/4)

We are looking for a set $M \subset \mathbb{Z}_{12}$ such that $2 \in M$ and $\left(M,+_{(\bmod 12)}\right)$ is a group:

- M must be closed under addition mod 12 :
- it must contain $2+2=\mathbf{4}, 2+4=\mathbf{6}, 4+6=\mathbf{1 0}, \ldots$
- the set $\{0,2,4,6,8,10\}$ is closed under this operation, so we have a groupoid;

Example (3/4)

We are looking for a set $M \subset \mathbb{Z}_{12}$ such that $2 \in M$ and $\left(M,+_{(\bmod 12)}\right)$ is a group:

- M must be closed under addition mod 12 :
- it must contain $2+2=\mathbf{4}, 2+4=\mathbf{6}, 4+6=\mathbf{1 0}, \ldots$
- the set $\{0,2,4,6,8,10\}$ is closed under this operation, so we have a groupoid;
- the operation remains associative, so it is a semigroup;

Example (3/4)

We are looking for a set $M \subset \mathbb{Z}_{12}$ such that $2 \in M$ and $\left(M,+_{(\bmod 12)}\right)$ is a group:

- M must be closed under addition mod 12 :
- it must contain $2+2=\mathbf{4}, 2+4=\mathbf{6}, 4+6=\mathbf{1 0}, \ldots$
- the set $\{0,2,4,6,8,10\}$ is closed under this operation, so we have a groupoid;
- the operation remains associative, so it is a semigroup;
- 0 remains the neutral element, so it is a monoid;

Example (3/4)

We are looking for a set $M \subset \mathbb{Z}_{12}$ such that $2 \in M$ and $\left(M,+_{(\bmod 12)}\right)$ is a group:

- M must be closed under addition mod 12 :
- it must contain $2+2=\mathbf{4}, 2+4=\mathbf{6}, 4+6=\mathbf{1 0}, \ldots$
- the set $\{0,2,4,6,8,10\}$ is closed under this operation, so we have a groupoid;
- the operation remains associative, so it is a semigroup;
- 0 remains the neutral element, so it is a monoid;
- each element has its inverse in the set (the set is closed under inversion), so it is a group.

Example (3/4)

We are looking for a set $M \subset \mathbb{Z}_{12}$ such that $2 \in M$ and $\left(M,+_{(\bmod 12)}\right)$ is a group:

- M must be closed under addition mod 12 :
- it must contain $2+2=\mathbf{4}, 2+4=\mathbf{6}, 4+6=\mathbf{1 0}, \ldots$
- the set $\{0,2,4,6,8,10\}$ is closed under this operation, so we have a groupoid;
- the operation remains associative, so it is a semigroup;
- 0 remains the neutral element, so it is a monoid;
- each element has its inverse in the set (the set is closed under inversion), so it is a group.

The wanted set is $M=\{0,2,4,6,8,10\}$.
We say that M is a subgroup generated by the set $\{2\}$.

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\{2\} \rightarrow \quad\{0,2,4,6,8,10\}
$$

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\begin{array}{cc}
\{0\} & \rightarrow \\
\{2\} \rightarrow & \{0\} \\
& \{0,2,4,6,8,10\}
\end{array}
$$

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\begin{array}{ccc}
\{0\} & \rightarrow & \{0\} \\
\{1\} & \rightarrow & \{0,1,2,3,4,5,6,7,8,9,10,11\} \\
\{2\} & \rightarrow & \{0,2,4,6,8,10\}
\end{array}
$$

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\begin{array}{ccc}
\{0\} & \rightarrow & \{0\} \\
\{1\} & \rightarrow & \{0,1,2,3,4,5,6,7,8,9,10,11\} \\
\{2\} & \rightarrow & \{0,2,4,6,8,10\} \\
\{3\} & \rightarrow & \{0,3,6,9\}
\end{array}
$$

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\begin{array}{ccc}
\{0\} & \rightarrow & \{0\} \\
\{1\} & \rightarrow & \{0,1,2,3,4,5,6,7,8,9,10,11\} \\
\{2\} & \rightarrow & \{0,2,4,6,8,10\} \\
\{3\} & \rightarrow & \{0,3,6,9\} \\
\{4\} & \rightarrow & \{0,4,8\}
\end{array}
$$

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\begin{array}{rlc}
\{0\} & \rightarrow & \{0\} \\
\{1\} & \rightarrow & \{0,1,2,3,4,5,6,7,8,9,10,11\} \\
\{2\} & \rightarrow & \{0,2,4,6,8,10\} \\
\{3\} & \rightarrow & \{0,3,6,9\} \\
\{4\} & \rightarrow & \{0,4,8\} \\
& & \\
\{5\} & \rightarrow & \{0,5,10,3,8,1,6,11,4,9,2,7\}
\end{array}
$$

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\begin{array}{rlc}
\{0\} & \rightarrow & \{0\} \\
\{1\} & \rightarrow & \{0,1,2,3,4,5,6,7,8,9,10,11\} \\
\{2\} & \rightarrow & \{0,2,4,6,8,10\} \\
\{3\} & \rightarrow & \{0,3,6,9\} \\
\{4\} & \rightarrow & \{0,4,8\} \\
\{5\} & \rightarrow & \{0,5,10,3,8,1,6,11,4,9,2,7\} \\
\{6\} & \rightarrow & \{0,6\}
\end{array}
$$

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\begin{array}{rlcl}
\{0\} & \rightarrow & \{0\} & \\
\{1\} & \rightarrow & \{0,1,2,3,4,5,6,7,8,9,10,11\} & \\
\{2\} & \rightarrow & \{0,2,4,6,8,10\} & \\
\{3\} & \rightarrow & \{0,3,6,9\} & \\
\{4\} & \rightarrow & \{0,4,8\} & \\
\{5\} & \rightarrow\{0,5,10,3,8,1,6,11,4,9,2,7\} & \leftarrow\{7\} \\
\{6\} & \rightarrow & \{0,6\} &
\end{array}
$$

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\begin{aligned}
& \{0\} \rightarrow \quad\{0\} \\
& \{1\} \rightarrow\{0,1,2,3,4,5,6,7,8,9,10,11\} \quad \leftarrow\{11\} \\
& \{2\} \rightarrow \quad\{0,2,4,6,8,10\} \quad \leftarrow\{10\} \\
& \{3\} \rightarrow \quad\{0,3,6,9\} \quad \leftarrow\{9\} \\
& \{4\} \rightarrow \quad\{0,4,8\} \quad \leftarrow\{8\} \\
& \{5\} \rightarrow\{0,5,10,3,8,1,6,11,4,9,2,7\} \leftarrow\{7\} \\
& \{6\} \rightarrow \quad\{0,6\}
\end{aligned}
$$

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

$$
\begin{aligned}
& \{0\} \rightarrow \quad\{0\} \\
& \{1\} \rightarrow\{0,1,2,3,4,5,6,7,8,9,10,11\} \quad \leftarrow\{11\} \\
& \{2\} \rightarrow \quad\{0,2,4,6,8,10\} \quad \leftarrow\{10\} \\
& \{3\} \rightarrow \quad\{0,3,6,9\} \quad \leftarrow\{9\} \\
& \{4\} \rightarrow \quad\{0,4,8\} \quad \leftarrow\{8\} \\
& \{5\} \rightarrow\{0,5,10,3,8,1,6,11,4,9,2,7\} \quad \leftarrow\{7\} \\
& \{6\} \rightarrow \quad\{0,6\}
\end{aligned}
$$

Back to the original question: there exist 6 different sets $M \subseteq \mathbb{Z}_{12}$ such that $\left(M,+_{(\bmod 12)}\right)$ is a group.

Definition of subgroup

Definition

Let $G=(M, \circ)$ be a group.
A subgroup of the group G is a pair $H=(N, \circ)$ such that:

- $N \subseteq M$ and $N \neq \emptyset$,
- H is a group.

Definition of subgroup

Definition

Let $G=(M, \circ)$ be a group.
A subgroup of the group G is a pair $H=(N, \circ)$ such that:

- $N \subseteq M$ and $N \neq \emptyset$,
- H is a group.
- Idea of substructures with the same properties as the original structure: compare for instance with a subspace of a linear (vector) space.

Definition of subgroup

Definition

Let $G=(M, \circ)$ be a group.
A subgroup of the group G is a pair $H=(N, \circ)$ such that:

- $N \subseteq M$ and $N \neq \emptyset$,
- H is a group.
- Idea of substructures with the same properties as the original structure: compare for instance with a subspace of a linear (vector) space.
- Similarly, we can define subgroupoids, subsemigroups, submonoids,...

Definition of subgroup

Definition

Let $G=(M, \circ)$ be a group.
A subgroup of the group G is a pair $H=(N, \circ)$ such that:

- $N \subseteq M$ and $N \neq \emptyset$,
- H is a group.
- Idea of substructures with the same properties as the original structure: compare for instance with a subspace of a linear (vector) space.
- Similarly, we can define subgroupoids, subsemigroups, submonoids,...
- A binary operation in the group $G=(M, \circ)$ is a function from $M \times M$ to M. The operation in a subgroup $H=(N, \circ)$ is, to be precise, the restriction of this operation to the set $N \times N$.

Trivial and proper subgroups

In each group $G=(M, \circ)$, there always exist at least two subgroups (if M contains only one element the two coincide):

- the group containing only the neutral element: $(\{e\}, \circ)$, and
- the group itself $G=(M, \circ)$.

These two groups are the trivial subgroups. Other subgroups are non-trivial or proper subgroups.

Trivial and proper subgroups

In each group $G=(M, \circ)$, there always exist at least two subgroups (if M contains only one element the two coincide):

- the group containing only the neutral element: $(\{e\}, \circ)$, and
- the group itself $G=(M, \circ)$.

These two groups are the trivial subgroups.
Other subgroups are non-trivial or proper subgroups.

Question

If H is a subgroup of a group G, is the neutral element of H identical to the neutral element of G ?

Intersection of subgroups

Theorem

Let $H_{1}, H_{2}, \ldots, H_{n}$, whith $n \geq 1$, be subgroups of a group $G=(M, \circ)$. Then

$$
H^{\prime}=\bigcap_{i=1,2, \ldots, n} H_{i}
$$

is also a subgroup of G.

Power of an element

Definition

Let $G=(M, \circ)$ be a group with neutral element e. We define for each element $a \in M$ and each positive $n \in \mathbb{N}$ the n-th power of the element a as

$$
\begin{aligned}
a^{0} & =e \\
a^{n} & =\underbrace{a \circ a \circ \cdots \circ a}_{n \text { times }} \\
a^{-n} & =\left(a^{-1}\right)^{n}=\underbrace{a^{-1} \circ a^{-1} \circ \cdots \circ a^{-1}}_{n \text { times }}
\end{aligned}
$$

Power of an element

Definition

Let $G=(M, \circ)$ be a group with neutral element e. We define for each element $a \in M$ and each positive $n \in \mathbb{N}$ the n-th power of the element a as

$$
\begin{aligned}
a^{0} & =e \\
a^{n} & =\underbrace{a \circ a \circ \cdots \circ a}_{n \text { times }} \\
a^{-n} & =\left(a^{-1}\right)^{n}=\underbrace{a^{-1} \circ a^{-1} \circ \cdots \circ a^{-1}}_{n \text { times }}
\end{aligned}
$$

Note that $a \circ a \circ \cdots \circ a$ can by written without brackets thanks to associativity (for a non-associative operation the result would depend on the order...).

Power of an element

Definition

Let $G=(M, \circ)$ be a group with neutral element e. We define for each element $a \in M$ and each positive $n \in \mathbb{N}$ the n-th power of the element a as

$$
\begin{aligned}
a^{0} & =e \\
a^{n} & =\underbrace{a \circ a \circ \cdots \circ a}_{n \text { times }} \\
a^{-n} & =\left(a^{-1}\right)^{n}=\underbrace{a^{-1} \circ a^{-1} \circ \cdots \circ a^{-1}}_{n \text { times }}
\end{aligned}
$$

Note that $a \circ a \circ \cdots \circ a$ can by written without brackets thanks to associativity (for a non-associative operation the result would depend on the order...). For all $n, m \in \mathbb{N}$ the following "natural" equalities are true:

- $a^{n+m}=a^{n} \circ a^{m}$,
- $a^{n m}=\left(a^{n}\right)^{m}$.

Power of an element

Definition

Let $G=(M, \circ)$ be a group with neutral element e. We define for each element $a \in M$ and each positive $n \in \mathbb{N}$ the n-th power of the element a as

$$
\begin{aligned}
a^{0} & =e \\
a^{n} & =\underbrace{a \circ a \circ \cdots \circ a}_{n \text { times }} \\
a^{-n} & =\left(a^{-1}\right)^{n}=\underbrace{a^{-1} \circ a^{-1} \circ \cdots \circ a^{-1}}_{n \text { times }}
\end{aligned}
$$

Note that $a \circ a \circ \cdots \circ a$ can by written without brackets thanks to associativity (for a non-associative operation the result would depend on the order...). For all $n, m \in \mathbb{N}$ the following "natural" equalities are true:

- $a^{n+m}=a^{n} \circ a^{m}$,
- $a^{n m}=\left(a^{n}\right)^{m}$.

For the additive notation of a group $G=(M,+)$, we define the n-th multiple of the element a and we denote it by $n \times a$ (resp. $-n \times a=n \times(-a)$).

Order of a (sub)group

Definition

The order of a (sub)group $G=(M, \circ)$, denoted $|G|$, is its number of elements. If M is an infinite set, the order is infinite.
According to the order we distinguish between finite and infinite groups.

Order of a (sub)group

Definition

The order of a (sub)group $G=(M, \circ)$, denoted $|G|$, is its number of elements. If M is an infinite set, the order is infinite.
According to the order we distinguish between finite and infinite groups.

Example

The group \mathbb{Z}_{12}^{+}is of order 12. It has 6 subgroups:

- two trivial: $\{0\}$ and $\{0,1,2,3,4,5,6,7,8,9,10,11\}$;
- and four proper: $\{0,6\},\{0,4,8\},\{0,3,6,9\}$, and $\{0,2,4,6,8,10\}$. of order 1, 2, 3, 4, 6 and 12 .

(Left) cosets of a subgroup

Let G be a group and H be one of its subgroups.
The (left) coset of H in G with respect to an element $g \in G$ is the set

$$
g H=\{g h: h \in H\} \quad \text { (or } g+H \text { in additive notation })
$$

Example

Let us consider the subgroup $H=\{0,3,6,9\}$ of \mathbb{Z}_{12}.
Find $g+H$ for all $g \in \mathbb{Z}_{12}$.

(Left) cosets of a subgroup

Let G be a group and H be one of its subgroups.
The (left) coset of H in G with respect to an element $g \in G$ is the set

$$
g H=\{g h: h \in H\} \quad \text { (or } g+H \text { in additive notation })
$$

Example

Let us consider the subgroup $H=\{0,3,6,9\}$ of \mathbb{Z}_{12}.
Find $g+H$ for all $g \in \mathbb{Z}_{12}$.

The index of H in G, denoted [$G: H$], is the number of different cosets of H in G.

Lagrange's Theorem

Theorem

Let H be a subgroup of a finite group G. The order of H divides the order of G.

Lagrange's Theorem

Theorem

Let H be a subgroup of a finite group G. The order of H divides the order of G. More precisely, $|G|=[G: H] \cdot|H|$.

Lagrange's Theorem

Theorem

Let H be a subgroup of a finite group G. The order of H divides the order of G. More precisely, $|G|=[G: H] \cdot|H|$.

This statement connects the abstract structure of a group with divisibility and also with the notion of prime numbers!
Consequence: A group with prime order has only trivial subgroups!

Lagrange's Theorem

Theorem

Let H be a subgroup of a finite group G. The order of H divides the order of G. More precisely, $|G|=[G: H] \cdot|H|$.

This statement connects the abstract structure of a group with divisibility and also with the notion of prime numbers!
Consequence: A group with prime order has only trivial subgroups!
To prove Lagrange's Theorem we need the following lemma.

Lemma

For all $a, b \in G$ one has $|a H|=|b H|$.

Lagrange's Theorem

Theorem

Let H be a subgroup of a finite group G. The order of H divides the order of G. More precisely, $|G|=[G: H] \cdot|H|$.

This statement connects the abstract structure of a group with divisibility and also with the notion of prime numbers!
Consequence: A group with prime order has only trivial subgroups!
To prove Lagrange's Theorem we need the following lemma.

Lemma

For all $a, b \in G$ one has $|a H|=|b H|$.

Question

Let G be a group of order n and $k \in \mathbb{N}$ be such that $k \mid n$. Is there any subgroup of G of order k ?

Group generated by a set $(1 / 2)$

Question: How to find the smallest subgroup of a group $G=(M, \circ)$ containing a given nonempty set $N \subset M$?

Group generated by a set $(1 / 2)$

Question: How to find the smallest subgroup of a group $G=(M, \circ)$ containing a given nonempty set $N \subset M$?

Definition

Let $G=(M, \circ)$ be a group and $N \subset M$ a nonempty set. The smallest subgroup of G containing N is the subgroup generated by N and is denoted by $\langle N\rangle$.

In particular, for a singleton $N=\{a\}$ we use the notation $\langle a\rangle=\langle\{a\}\rangle$.

Group generated by a set $(1 / 2)$

Question: How to find the smallest subgroup of a group $G=(M, \circ)$ containing a given nonempty set $N \subset M$?

Definition

Let $G=(M, \circ)$ be a group and $N \subset M$ a nonempty set. The smallest subgroup of G containing N is the subgroup generated by N and is denoted by $\langle N\rangle$. In particular, for a singleton $N=\{a\}$ we use the notation $\langle a\rangle=\langle\{a\}\rangle$.

Example

For the group \mathbb{Z}_{12}^{+}, we have proven that $\langle 2\rangle=\left(\{0,2,4,6,8,10\},+_{\bmod 12}\right)$.

Group generated by a set $(1 / 2)$

Question: How to find the smallest subgroup of a group $G=(M, \circ)$ containing a given nonempty set $N \subset M$?

Definition

Let $G=(M, \circ)$ be a group and $N \subset M$ a nonempty set. The smallest subgroup of G containing N is the subgroup generated by N and is denoted by $\langle N\rangle$. In particular, for a singleton $N=\{a\}$ we use the notation $\langle a\rangle=\langle\{a\}\rangle$.

Example

For the group \mathbb{Z}_{12}^{+}, we have proven that $\langle 2\rangle=\left(\{0,2,4,6,8,10\},+_{\bmod 12}\right)$.

Definition

If for a set M it holds that $\langle M\rangle=G$, we say that M is a generating set of G.

Group generated by a set $(2 / 2)$

Example

The group \mathbb{Z}_{12}^{+}is generated, for instance, by the sets $\{1\}$ and $\{5\}$, i.e.

$$
\langle 1\rangle=\langle 5\rangle=\mathbb{Z}_{12}^{+} .
$$

Group generated by a set $(2 / 2)$

Example

The group \mathbb{Z}_{12}^{+}is generated, for instance, by the sets $\{1\}$ and $\{5\}$, i.e.

$$
\langle 1\rangle=\langle 5\rangle=\mathbb{Z}_{12}^{+} .
$$

Theorem

Let $G=(M, \circ)$ be a group and $N \subset M$ a nonempty set. The following holds:

- the subgroup $\langle N\rangle$ equals the intersection of all subgroups containing N, i.e.

$$
\langle N\rangle=\bigcap\{H: H \text { is a subgroup of } G \text { containing } N\}
$$

Group generated by a set $(2 / 2)$

Example

The group \mathbb{Z}_{12}^{+}is generated, for instance, by the sets $\{1\}$ and $\{5\}$, i.e.

$$
\langle 1\rangle=\langle 5\rangle=\mathbb{Z}_{12}^{+} .
$$

Theorem

Let $G=(M, \circ)$ be a group and $N \subset M$ a nonempty set. The following holds:

- the subgroup $\langle N\rangle$ equals the intersection of all subgroups containing N, i.e.

$$
\langle N\rangle=\bigcap\{H: H \text { is a subgroup of } G \text { containing } N\}
$$

- all elements in $\langle N\rangle$ can be obtained by means of "group span", i.e.,

$$
\left\{a_{1}^{k_{1}} \circ a_{2}^{k_{2}} \circ \cdots a_{n}^{k_{n}}: n \in \mathbb{N}, a_{i} \in N, k_{i} \in \mathbb{Z}\right\} .
$$

Group generated by a set $(2 / 2)$

Example

The group \mathbb{Z}_{12}^{+}is generated, for instance, by the sets $\{1\}$ and $\{5\}$, i.e.

$$
\langle 1\rangle=\langle 5\rangle=\mathbb{Z}_{12}^{+} .
$$

Theorem

Let $G=(M, \circ)$ be a group and $N \subset M$ a nonempty set. The following holds:

- the subgroup $\langle N\rangle$ equals the intersection of all subgroups containing N, i.e.

$$
\langle N\rangle=\bigcap\{H: H \text { is a subgroup of } G \text { containing } N\}
$$

- all elements in $\langle N\rangle$ can be obtained by means of "group span", i.e.,

$$
\left\{a_{1}^{k_{1}} \circ a_{2}^{k_{2}} \circ \cdots a_{n}^{k_{n}}: n \in \mathbb{N}, a_{i} \in N, k_{i} \in \mathbb{Z}\right\} .
$$

Groups generated by one element $(1 / 2)$

We have seen that the additive group \mathbb{Z}_{12}^{+}is equal to $\langle 1\rangle,\langle 5\rangle,\langle 7\rangle$, and $\langle 11\rangle$.
The following theorem generalize this fact.

Theorem

An additive group modulo n is equal to $\langle k\rangle$ if and only if k and n are coprimes.

Groups generated by one element $(1 / 2)$

We have seen that the additive group \mathbb{Z}_{12}^{+}is equal to $\langle 1\rangle,\langle 5\rangle,\langle 7\rangle$, and $\langle 11\rangle$.
The following theorem generalize this fact.

Theorem

An additive group modulo n is equal to $\langle k\rangle$ if and only if k and n are coprimes.

Proof.

This statement is a consequence of a general theorem which will be proven later and of the fact that $\mathbb{Z}_{n}^{+}=\langle 1\rangle$ for all $n \geq 2$.

Groups generated by one element $(2 / 2)$

The group $(\{1,2, \ldots, p-1\}, \cdot(\bmod p))$, where p is a prime number, is the multiplicative group modulo p, denoted \mathbb{Z}_{p}^{\times}.

Groups generated by one element $(2 / 2)$

The group $(\{1,2, \ldots, p-1\}, \cdot(\bmod p))$, where p is a prime number, is the multiplicative group modulo p, denoted \mathbb{Z}_{p}^{\times}.

Example

Is there a one-element set generating the group \mathbb{Z}_{11}^{\times}?

Groups generated by one element $(2 / 2)$

The group $(\{1,2, \ldots, p-1\}, \cdot(\bmod p))$, where p is a prime number, is the multiplicative group modulo p, denoted \mathbb{Z}_{p}^{\times}.

Example

Is there a one-element set generating the group \mathbb{Z}_{11}^{\times}?
Yes, for example $\langle 2\rangle=\mathbb{Z}_{11}^{\times}$.

Groups generated by one element $(2 / 2)$

The group $(\{1,2, \ldots, p-1\}, \cdot(\bmod p))$, where p is a prime number, is the multiplicative group modulo p, denoted \mathbb{Z}_{p}^{\times}.

Example

Is there a one-element set generating the group \mathbb{Z}_{11}^{\times}?
Yes, for example $\langle 2\rangle=\mathbb{Z}_{11}^{\times}$.
On the other hand, $\langle 3\rangle=(\{1,3,4,5,9\}, \cdot(\bmod 11))$.

Groups generated by one element $(2 / 2)$

The group $(\{1,2, \ldots, p-1\}, \cdot(\bmod p))$, where p is a prime number, is the multiplicative group modulo p, denoted \mathbb{Z}_{p}^{\times}.

Example

Is there a one-element set generating the group \mathbb{Z}_{11}^{\times}?
Yes, for example $\langle 2\rangle=\mathbb{Z}_{11}^{\times}$.
On the other hand, $\langle 3\rangle=(\{1,3,4,5,9\}, \cdot(\bmod 11))$.

Finding the generator(s) of a multiplicative group \mathbb{Z}_{p}^{\times}is more complicated than for an additive group \mathbb{Z}_{n}^{+}.
Multiplicative groups have more complicated and interesting structure.

Definition of cyclic group

Definition

A group $G=(M, \circ)$ is cyclic if there exists an element $a \in M$ such that $\langle a\rangle=G$. This element is a generator of the cyclic group.

Definition of cyclic group

Definition

A group $G=(M, \circ)$ is cyclic if there exists an element $a \in M$ such that $\langle a\rangle=G$. This element is a generator of the cyclic group.

- \mathbb{Z}_{n}^{+}is a cyclic group for every n and its generators are all positive numbers $k \leq n$ coprime with n.

Definition of cyclic group

Definition

A group $G=(M, \circ)$ is cyclic if there exists an element $a \in M$ such that $\langle a\rangle=G$. This element is a generator of the cyclic group.

- \mathbb{Z}_{n}^{+}is a cyclic group for every n and its generators are all positive numbers $k \leq n$ coprime with n.
- The infinite group $(\mathbb{Z},+)$ is cyclic and it has just two generators: 1 and -1 .

Definition of cyclic group

Definition

A group $G=(M, \circ)$ is cyclic if there exists an element $a \in M$ such that $\langle a\rangle=G$. This element is a generator of the cyclic group.

- \mathbb{Z}_{n}^{+}is a cyclic group for every n and its generators are all positive numbers $k \leq n$ coprime with n.
- The infinite group $(\mathbb{Z},+)$ is cyclic and it has just two generators: 1 and -1 .
- \mathbb{Z}_{11}^{\times}is cyclic, and 2 is a generator.

Why "cyclic"?

Consider the multiplicative group \mathbb{Z}_{13}^{\times}.
If we repeatedly compose the generator 2 with itself we successively get all elements of the group: $2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=3, \ldots, \quad 2^{12}=1$. The 13 -th power is again the number 2 and so the sequence of powers is indeed stuck in a cycle.

```
\mp@subsup{2}{}{1}
2
```


Why "cyclic"?

Consider the multiplicative group \mathbb{Z}_{13}^{\times}.
If we repeatedly compose the generator 2 with itself we successively get all elements of the group: $2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=3, \ldots, \quad 2^{12}=1$. The 13 -th power is again the number 2 and so the sequence of powers is indeed stuck in a cycle.
$(\bmod 13)$

subgroups: $\{1,3,4,9,10,12\}$

Why "cyclic"?

Consider the multiplicative group \mathbb{Z}_{13}^{\times}.
If we repeatedly compose the generator 2 with itself we successively get all elements of the group: $2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=3, \ldots, \quad 2^{12}=1$. The 13 -th power is again the number 2 and so the sequence of powers is indeed stuck in a cycle.
$(\bmod 13)$

$$
2^{1} \quad 2^{2}
$$

$$
\begin{array}{llllllllllll}
2 & 4 & 8 & 3 & 6 & 12 & 11 & 9 & 5 & 10 & 7 & 1
\end{array}
$$

subgroups: $\{1,3,4,9,10,12\},\{1,5,8,12\}$

Why "cyclic"?

Consider the multiplicative group \mathbb{Z}_{13}^{\times}.
If we repeatedly compose the generator 2 with itself we successively get all elements of the group: $2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=3, \ldots, \quad 2^{12}=1$. The 13 -th power is again the number 2 and so the sequence of powers is indeed stuck in a cycle.

subgroups: $\{1,3,4,9,10,12\},\{1,5,8,12\},\{1,3,9\}$

Why "cyclic"?

Consider the multiplicative group \mathbb{Z}_{13}^{\times}.
If we repeatedly compose the generator 2 with itself we successively get all elements of the group: $2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=3, \ldots, \quad 2^{12}=1$. The 13 -th power is again the number 2 and so the sequence of powers is indeed stuck in a cycle.

$$
\begin{array}{lllllllllll}
2^{1} & 2^{2} & 2^{3} & 2^{4} & 2^{5} & 2^{6} & 2^{7} & 2^{8} & 2^{9} & 2^{10} & 2^{11} \\
2^{12} \\
2 & 4 & 8 & 3 & 6 & 12 & 11 & 9 & 5 & 10 & 7
\end{array}
$$

subgroups: $\{1,3,4,9,10,12\},\{1,5,8,12\},\{1,3,9\},\{1,12\}$.

Why "cyclic"?

Consider the multiplicative group \mathbb{Z}_{13}^{\times}.
If we repeatedly compose the generator 2 with itself we successively get all elements of the group: $2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=3, \ldots, \quad 2^{12}=1$. The 13 -th power is again the number 2 and so the sequence of powers is indeed stuck in a cycle.

subgroups: $\{1,3,4,9,10,12\},\{1,5,8,12\},\{1,3,9\},\{1,12\}$.
generators: $2,6,7,11$.

Fermat's Theorem (1/2)

Theorem

In a cyclic group $G=(M, \circ)$ of order n, for all elements $a \in M$, it holds that

$$
a^{n}=e
$$

Where e is the neutral element of G.

Fermat's Theorem (1/2)

Theorem

In a cyclic group $G=(M, \circ)$ of order n, for all elements $a \in M$, it holds that

$$
a^{n}=e
$$

Where e is the neutral element of G.

Proof.

Consider a sequence of elements from $M: a, a^{2}, a^{3}, a^{4}, \ldots$

Fermat's Theorem $(1 / 2)$

Theorem

In a cyclic group $G=(M, \circ)$ of order n, for all elements $a \in M$, it holds that

$$
a^{n}=e
$$

Where e is the neutral element of G.

Proof.

Consider a sequence of elements from M : $a, a^{2}, a^{3}, a^{4}, \ldots$
Denote q the smallest number such that $a^{q}=e$. Clearly $q \leq n$ (why?!)

Fermat's Theorem (1/2)

Theorem

In a cyclic group $G=(M, \circ)$ of order n, for all elements $a \in M$, it holds that

$$
a^{n}=e
$$

Where e is the neutral element of G.

Proof.

Consider a sequence of elements from $M: a, a^{2}, a^{3}, a^{4}, \ldots$
Denote q the smallest number such that $a^{q}=e$. Clearly $q \leq n$ (why?!)
The set a, a^{2}, \cdots, a^{q} is the subgroup $\langle a\rangle$ and has order q.
By Lagrange's Theorem, we have that q divides n, i.e,. there exists $k \in \mathbb{N}$ such that $n=q k$.

Fermat's Theorem (1/2)

Theorem

In a cyclic group $G=(M, \circ)$ of order n, for all elements $a \in M$, it holds that

$$
a^{n}=e
$$

Where e is the neutral element of G.

Proof.

Consider a sequence of elements from $M: a, a^{2}, a^{3}, a^{4}, \ldots$
Denote q the smallest number such that $a^{q}=e$. Clearly $q \leq n$ (why?!)
The set a, a^{2}, \cdots, a^{q} is the subgroup $\langle a\rangle$ and has order q.
By Lagrange's Theorem, we have that q divides n, i.e,. there exists $k \in \mathbb{N}$ such that $n=q k$.
We have $a^{n}=a^{q k}=\left(a^{q}\right)^{k}=e^{k}=e$.

Fermat's Theorem $(2 / 2)$

\mathbb{Z}_{p}^{\times}is always a cyclic group (it is not trivial to prove it) and its order is $p-1$.

Fermat's Theorem $(2 / 2)$

\mathbb{Z}_{p}^{\times}is always a cyclic group (it is not trivial to prove it) and its order is $p-1$.

Applying the previous theorem to \mathbb{Z}_{p}^{\times}we obtain the well-known Fermat's Little Theorem.

Corollary (Fermat's Little Theorem)

For an arbitrary prime number p and an arbitrary $1 \leq a<p$ we have that

$$
a^{p-1} \equiv 1(\bmod p) .
$$

How to find all generators $(1 / 2)$

Generally, to find all generators is not an easy task (e.g., in groups \mathbb{Z}_{p}^{\times}we are not able to do it algorithmically); but if we have one, it is easy to find all the others.

Theorem

If (G, \circ) is a cyclic group of order n and a is one of its generator, then a^{k} is a generator if and only if k and n are coprime.

How to find all generators ($1 / 2$)

Generally, to find all generators is not an easy task (e.g., in groups \mathbb{Z}_{p}^{\times}we are not able to do it algorithmically); but if we have one, it is easy to find all the others.

Theorem

If (G, \circ) is a cyclic group of order n and a is one of its generator, then a^{k} is a generator if and only if k and n are coprime.

To prove the previous theorem we use the following

Lemma

Let $D=\{m k+\ell n \mid m, \ell \in \mathbb{Z}\}$.
Then $\operatorname{gcd}(k, n)=\min \{|a| \mid a \in D \backslash\{0\}\}$.

How to find all generators $(2 / 2)$

Corollary

In a cyclic group of order n, the number of all generators is equal to $\varphi(n)$.
Where φ is the Euler's (totient) function, which assigns to each integer n the number of integers less than n that are coprime with n

How to find all generators $(2 / 2)$

Corollary

In a cyclic group of order n, the number of all generators is equal to $\varphi(n)$.
Where φ is the Euler's (totient) function, which assigns to each integer n the number of integers less than n that are coprime with n
\mathbb{Z}_{p}^{\times}is a cyclic group of order $p-1$ and thus it has $\varphi(p-1)$ generators.

How to find all generators ($2 / 2$)

Corollary

In a cyclic group of order n, the number of all generators is equal to $\varphi(n)$.
Where φ is the Euler's (totient) function, which assigns to each integer n the number of integers less than n that are coprime with n
\mathbb{Z}_{p}^{\times}is a cyclic group of order $p-1$ and thus it has $\varphi(p-1)$ generators.

An effective algorithm for evaluating $\varphi(n)$ does not exist; if it existed, we would be able to find the integer factorization of arbitrarily large n and RSA would not be safe!

Subgroups of cyclic group are cyclic

Theorem

Any subgroup of a cyclic group is again a cyclic group.

Subgroups of cyclic group are cyclic

Theorem

Any subgroup of a cyclic group is again a cyclic group.

Consider again the multiplicative group \mathbb{Z}_{13}^{\times}.

$(\bmod 13): \quad$| 2^{1} | 2^{2} | 2^{3} | 2^{4} | 2^{5} | 2^{6} | 2^{7} | 2^{8} | 2^{9} | 2^{10} | 2^{11} | 2^{12} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 8 | 3 | 6 | 12 | 11 | 9 | 5 | 10 | 7 | 1 |

Subgroups of cyclic group are cyclic

Theorem

Any subgroup of a cyclic group is again a cyclic group.

Consider again the multiplicative group \mathbb{Z}_{13}^{\times}.

subgroups: $\{1,3,4,9,10,12\}$

Subgroups of cyclic group are cyclic

Theorem

Any subgroup of a cyclic group is again a cyclic group.

Consider again the multiplicative group \mathbb{Z}_{13}^{\times}.

subgroups: $\{1,3,4,9,10,12\},\{1,5,8,12\}$

Subgroups of cyclic group are cyclic

Theorem

Any subgroup of a cyclic group is again a cyclic group.

Consider again the multiplicative group \mathbb{Z}_{13}^{\times}.

subgroups: $\{1,3,4,9,10,12\},\{1,5,8,12\},\{1,3,9\}$

Subgroups of cyclic group are cyclic

Theorem

Any subgroup of a cyclic group is again a cyclic group.

Consider again the multiplicative group \mathbb{Z}_{13}^{\times}.

$(\bmod 13) \vdots \quad$| 2^{1} | 2^{2} | 2^{3} | 2^{4} | 2^{5} | 2^{6} | 2^{7} | 2^{8} | 2^{9} | 2^{10} | 2^{11} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2^{12} subgroups: $\{1,3,4,9,10,12\},\{1,5,8,12\},\{1,3,9\},\{1,12\}$.

Subgroups of cyclic group are cyclic

Theorem

Any subgroup of a cyclic group is again a cyclic group.

Consider again the multiplicative group \mathbb{Z}_{13}^{\times}.

$$
\begin{array}{ll}
(\bmod 13)
\end{array} 2^{1} \times \mathbf{\times} \times 2^{5} \times 2^{7} \times \times \times{ }^{0} 2^{11} \mathbf{x}^{2}
$$

subgroups: $\{1,3,4,9,10,12\},\{1,5,8,12\},\{1,3,9\},\{1,12\}$.
generators: 2, 6, 7, 11.

Order of an element

Let G be a group and $g \in G$. The order of g (in G) is the order of the group that is generated by g.

In the finite case, we have the equivalence order $(g)=\#\langle g\rangle$.

Order of an element

Let G be a group and $g \in G$.
The order of g (in G) is the order of the group that is generated by g.

In the finite case, we have the equivalence $\operatorname{order}(g)=\#\langle g\rangle$.

Example

Find the order of all elements in \mathbb{Z}_{5}^{\times}and in \mathbb{Z}_{7}^{\times}.

