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Numerical mathematics Introduction

Numerical mathematics

Numerical mathematics is devoted to methods that seek an approximate but
sufficiently accurate solution of problems in various fields. A simplified
mathematical model of the problem is used; its partial tasks consist of various
mathematical problems.

The following mathematical problems are often involved:
1. solution of systems of linear equations,
2. solution of differential equations,
3. calculation of integrals,
4. evaluations of function values,
5. estimation of errors in calculations,
6. . . .

Typically, a computer calculation is involved.
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Numerical mathematics Introduction

From the history

Error in the Patriot missile system

(0.1)10 = (0.000110011001100110011001100110011...)2

Explosion of the Ariane 5 rocket
conversion from a 64-bit floating point number to a 16-bit signed integer

. . .

This does not mean that approximation methods do not work. In the vast
majority of cases they work well, but it is important to know how reliable they are.
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Numerical mathematics Origin of errors

Category of errors

We will use different approximations to design the algorithm. We will therefore
make various kind of mistakes, which can be divided according to their origin:

1 errors in the model: the mathematical model to solve the problem is
somehow simplified.

2 errors in the data: data often come from measurements that do not have
absolute accuracy.

3 errors in the algorithm: we don’t have to have an algorithm that finds the
exact solution in a finite number of steps.

4 rounding errors: errors occur during the calculation itself (e.g., during
arithmetic operations).

Apart from data errors, we will give examples of all other kinds of errors. We start
with rounding errors, which are given by the fact that the algorithm need a
computer to do the hard work.
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Computer arithmetics Representation with floating point

Representation with floating point

To store a number in computer we usually use the binary number system.

(6)10 = (110)2 (0.1)10 = (0.000110011001100110011001100110011...)2

For non-integers, one can use the scientific notation. In the binary base a
number x is represented as

x = ±m · 2e .

m - mantissa/significand having a fixed number of digits / fixed length; these
digits are also called significant digits.

e - exponent having a fixed number of digits / fixed length.
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Computer arithmetics Representation with floating point

IEEE-754
A number x is represented by its sign s and by the numbers e and m.
The standard IEEE-754 defines the following lengths of e and m and their
interpretation.

precision length of m d = length of e b
binary32 / single precision 23 8 127
binary64 / double precision 52 11 1023
binary128 / quadruple precision 112 15 16383

if e = 2d − 1 and m 6= 0, then x = NaN (Not a Number)
if e = 2d − 1 and m = 0 and s = 0, then x = +Inf
if e = 2d − 1 and m = 0 and s = 1, then x = −Inf
if 0 < e < 2d − 1, then x = (−1)s · (1.m)2 · 2e−b (so-called normalized
numbers)
if e = 0 and m 6= 0, then x = (−1)s · (0.m)2 · 2−b+1 (so-called
subnormal/unnormalized numbers)
if e = 0 and m = 0 and s = 0, then x = 0
if e = 0 and m = 0 and s = 1, then x = −0
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Computer arithmetics Representation with floating point

Machine numbers (1/3)
The numbers that can be represented as floating point numbers (with selected
finite lengths of m and e) are called machine numbers.

Example: take m of length 2 bits, e of length 3 bits, and b = 3.

We obtain the following set of numbers (we consider only positive elements)

{
0, 1

16 ,
1
8 ,

3
16 ,

1
4 ,

5
16 ,

3
8 ,

7
16 ,

1
2 ,

5
8 ,

3
4 ,

7
8 , 1,

5
4 ,

3
2 ,

7
4 , 2,

5
2 , 3,

7
2 , 4, 5, 6, 7, 8, 10, 12, 14

}
Subnormal numbers are in brown.
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4
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4

5
4

7
4

1
8

3
8

5
8

7
8

1
16

3
16

5
16

7
16

The set of all machine numbers with a given precision has little in common with
the set of real numbers. It resembles more to a finite subset of integers.
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Computer arithmetics Representation with floating point

Machine numbers (2/3)

Denote the set of machine numbers by F .

The set F has the largest and the smallest positive elements as follows:

precision max. no. min. pos. normalized min. pos. subnormal

single (2− 2−23) · 2127
≈ 3.4 · 1038

2−126
≈ 1.2 · 10−38

2−126−23 = 2−149
≈ 1.4 · 10−45

double (2− 2−52) · 21023
≈ 1.8 · 10308

2−1022
≈ 2.2 · 10−308

2−1022−52 = 2−1074
≈ 4.9 · 10324
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Computer arithmetics Representation with floating point

Machine numbers (3/3)

F is characterized by the machine epsilon εF , which is the difference between 1.0
and the smallest number in F larger than 1.

For single precision we have εF = 2−23, for double 2−52.

Proposition

The distance between any two neighboring normalized numbers in F is at least εF2
and at most εF .
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Computer arithmetics Representation with floating point

Representation of real numbers (1/3)

Let fl : R→ F be the mapping which assigns to any x ∈ R the closest machine
number.

The “closest” is given by the method chosen: rounding (“ties to even”), chopping
(rounding towards 0),. . .

When trying to represent a number which is out of the representable range, an
overflow or underflow is returned.

Definition
Let a number α be an approximate value of a number a.

The absolute error is the value |α− a|.

For a 6= 0, the relative error is |α− a|
|a| .
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Computer arithmetics Representation with floating point

Representation of real numbers (2/3)
In single precision, suppose that a number x ∈ R lies in the normalized range, i.e.,

x = q · 2`, where 1 ≤ q < 2 and − 126 ≤ ` ≤ 127.

What is the error due to the rounding or chopping when the closest machine
number is chosen?

Let’s round towards 0, i.e., chop off bits which do not fit into the significand (for
positive numbers).

If x = (1.b1b2b3b3 . . .)2 · 2` then fl(x) = (1.b1b2 . . . b23) · 2`.

The absolute error and the absolute errors are respectively:

|x − fl(x)| ≤ 2−23+` and |x − fl(x)|
|x | ≤ 2−23+`

q · 2` ≤ 2−23.
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Computer arithmetics Representation with floating point

Representation of real numbers (3/3)

The threshold of relative error is called the unit roundoff error and is denoted by
u. Thus, in the single precision with chopping we have u = 2−23.

Attention, this number is sometimes called machine epsilon.

If we use mathematical rounding, we obtain u = 2−24.

Proposition
Let x ∈ R be greater than the smallest normalized number of F and smaller than
the greatest normalized number of F . We have

fl(x) = x(1 + δ), where |δ| ≤ u,
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Computer arithmetics Arithmetic operations

Arithmetic operations - error

Proposition
Let x , y ∈ F and � be the operation of addition, multiplication or division. If
there is no overflow or underflow, then we have

fl(x � y) = (x � y)(1 + δ), where |δ| ≤ u,

In general: If we operate with more numbers, it is better to start with the smallest
ones.
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Computer arithmetics Arithmetic operations

Arithmetic operations - a demonstration
Let f : R2 7→ R be a mapping given by

f (x , y) = 333.75y6 + x2
(
11x2y2 − y6 − 121y4 − 2

)
+ 5.5y8 + x

2y .

Let us evaluate f (77617, 33096):

SageMath (precision 23 bits) 1.17260
SageMath (precision 24 bits) −6.33825 · 10−29
SageMath (precision 53 bits) −1.18059162071741 · 1021
SageMath (precision 54 bits) 1.18059162071741 · 1021
SageMath (precision 100 bits) 1.1726039400531786318588349045
SageMath (precision 121 bits) 1.17260394005317863185883490452018371
SageMath (precision 122 bits) −0.827396059946821368141165095479816292

The exact solution is −54767
66192 ≈ −0.827396.

[S. M. Rump: Algorithms for verified inclusions - theory and practice, ..., 1988]
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Computer arithmetics Arithmetic operations

Loss of significant digits (1/3)

Errors while doing arithmetical operations can accumulate.

Big problems can be caused by the so-called cancellation.

Let us illustrate this on an example. Imagine that our computer calculates in basis
10 and uses 10 significant digits.
We want to evaluate x − sin(x) for x = 1

15.

x ← 6.6666 66667 ·10−2
sin(x)← 6.6617 29492 ·10−2

x − sin(x)← 0.0049 37175 ·10−2
x − sin(x)← 4.9371 75000 ·10−5

The last 3 zeros are not correct significant digits.

Let us calculate the relative error.
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Computer arithmetics Arithmetic operations

Loss of significant digits (2/3)

∣∣∣ 115 − sin
( 1
15
)
− fl

(
fl
( 1
15
)
− sin

(
fl
( 1
15
)) )∣∣∣∣∣ 1

15 − sin
( 1
15
)∣∣ ≈ 1.4 · 10−7.

That is a lot in comparison to

|x − fl(x)|
|x | ≤ 5 · 10−10.

Proposition
Let x and y be normalized machine numbers and x > y > 0.
If 2−p ≤ 1− y

x ≤ 2−q for some positive integers p and q, then at most p and at
least q significant binary bits are lost when performing the operation x − y.
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Computer arithmetics Arithmetic operations

Loss of significant digits (3/3)

Cancellation can be avoided by using the following techniques:
rationalizing the problem, i.e., using rational numbers and avoiding the
subtraction in floating points arithmetics,
using series expansions (such as Taylor series),
using other identities,. . .
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Computer arithmetics Errors - conclusion

Errors - conclusion

Origins of errors:
rounding errors and their accumulation,
cancellation.

The errors on the inputs may also play an important role. Those errors are given
by the origin of the input which may be the output of another calculation or a
measurement.

A few final notes:
increased precision may not lead to a more precise result,
cancellation can be useful - it may cancel rounding errors,
few operations with small numbers do not imply a small error.
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Computer arithmetics Errors - conclusion

Errors – alternatives

One of the problems of machine numbers (IEEE-754) is in the ignorance of the
created error.

There are some alternatives:

Exact arithmetics: Z, Q or GF (p) (it is not always possible or suitable).

Interval arithmetics (we work with intervals instead of points). (IEEE
1788–2015).

Unum.
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Conditioning and stability of an algorithm Example

Example: system of linear equations (1/2)
Consider two systems of linear equations with 2 unknowns:(

1 1/2
1/2 1/3

)(
x
y

)
=
(
3/2
1

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(
3/2
1

)
.

The solutions are

(x , y)T = (0, 3)T and (x , y)T = (85/52,−35/52)T ≈ (1.6346,−0.67308)T .

Let us try to simulate an error on the input, or during a calculation, by changing

the right side to
(
3/2
5/6

)
.(

1 1/2
1/2 1/3

)(
x
y

)
=
(
3/2
5/6

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(
3/2
5/6

)
.

The solutions change to

(x , y)T = (1, 1)T and (x , y)T = (125/78,−20/39)T ≈ (1.6026,−0.51282)T .
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Conditioning and stability of an algorithm Example

Example: system of linear equations (2/2)

The change in the right side was(
3/2
1

)
−
(
3/2
5/6

)
=
(

0
1/6

)
,

a vector of Euclidean length 1/6 (the relative error is 0.09).

The change in the solution of the first equation was(
0
3

)
−
(
1
1

)
=
(
−1
2

)
(the relative error is 0.75) and the one in the solution of the second equation(

85/52
−35/52

)
−
(
125/78
−20/39

)
=
(

5/156
−25/156

)
(the relative error is 0.09).
Why is it that the first system is more sensitive to this change? Why are the two
relative errors so different?

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 9 Fall 2021/2022 22 / 46



Conditioning and stability of an algorithm Example

Example: system of linear equations (2/2)

The change in the right side was(
3/2
1

)
−
(
3/2
5/6

)
=
(

0
1/6

)
,

a vector of Euclidean length 1/6 (the relative error is 0.09).
The change in the solution of the first equation was(

0
3

)
−
(
1
1

)
=
(
−1
2

)
(the relative error is 0.75) and the one in the solution of the second equation(

85/52
−35/52

)
−
(
125/78
−20/39

)
=
(

5/156
−25/156

)
(the relative error is 0.09).

Why is it that the first system is more sensitive to this change? Why are the two
relative errors so different?

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 9 Fall 2021/2022 22 / 46



Conditioning and stability of an algorithm Example

Example: system of linear equations (2/2)

The change in the right side was(
3/2
1

)
−
(
3/2
5/6

)
=
(

0
1/6

)
,

a vector of Euclidean length 1/6 (the relative error is 0.09).
The change in the solution of the first equation was(

0
3

)
−
(
1
1

)
=
(
−1
2

)
(the relative error is 0.75) and the one in the solution of the second equation(

85/52
−35/52

)
−
(
125/78
−20/39

)
=
(

5/156
−25/156

)
(the relative error is 0.09).
Why is it that the first system is more sensitive to this change? Why are the two
relative errors so different?

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 9 Fall 2021/2022 22 / 46



Conditioning and stability of an algorithm Forward and backzard error

Forward and backward error

Let V be a numerical algorithm whose theoretical (accurate) output is denoted by
V ∗(d) where d is the input.

The result in the finite arithmetic is denoted V (d). Furthermore, denote the
so-called forward error by ∆v := V ∗(d)− V (d).

The least (in a norm) number ∆d such that V (d + ∆d) = V ∗(d) is the
backward error.

d + ∆d

d

V ∗(d)

V (d)

∆d

V

V ∗

V

∆v

If for all considerable inputs d the
backward error is relatively small, we say
that the algorithm is backward stable.
“Small” depends again on the context.
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Conditioning and stability of an algorithm Conditioning

Conditioning

The conditioning of a problem expresses the dependence of the output on the
inputs - given a little perturbation δd of the input, we look how the output
changes.

The relative condition number of a problem is

Cr = lim
ε→0+

sup
d+δd ∈D
‖δd‖≤ε

‖V (d + δd)− V (d)‖
‖V (d)‖
‖δd‖
‖d‖

,

where D is the domain of V .

If Cr ≈ 1, then we say that the problem is well-conditioned.
If it is large, we say the problem is ill-conditioned.
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Direct and iterative methods Directive methods

Direct methods

A direct method calculates a solution of a problem in finitely many steps such
that in absolute theoretical precision in gives the exact solution.
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Direct and iterative methods Iterative methods

Idea of iterative methods

Iterative methods look for approximate solutions to mathematical problems by
constructing a sequence of approximate solutions:

x0, x1, x2, . . .

Every following (approximate) solution is derived from the previous:

xk = T (xk−1),

for k > 0 and some mapping T .

The mapping T is chosen so that the sequence (xi ) has a limit which is the
(exact) solution of the problem.

If T is the same for all k, the method is called stationary.
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Systems of linear equations Notation

System of linear equations

We want to solve a system of n linear equations. We write the system in matrix
representation

Ax = b,

where A ∈ Rn,n is regular and b ∈ Rn,1.

This is often a partial subproblem of a larger problem.
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Systems of linear equations Notation

Norm - reminder
A norm on a vector space V is a mapping ‖ · ‖ : V 7→ R+

0 which satisfies
1. ‖x‖ = 0 ⇒ x = 0,
2. ‖αx‖ = |α| · ‖x‖,
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),

for all x , y ∈ V and all scalars α.

On Rn (or Cn) the most used norm is probably the Euclidean norm:

‖x‖ =
( n∑

i=1
x2i

) 1
2

,

where x = (x1, x2 . . . , xn) ∈ Rn.

Other commonly used norms include
‖x‖∞ = max

{
|xi | : i ∈ {1, . . . , n}

}
maximum norm,

‖x‖1 =
n∑

i=1
|xi | taxicab or L1 norm.
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Systems of linear equations Notation

Matrix norm

Given a vector norm ‖ · ‖, we define the induced matrix norm of the matrix
A ∈ Cn,n as follows

‖A‖ = sup
{
‖Ax‖ : x ∈ Cn,1 and ‖x‖ = 1

}
.

Such norm satisfies
‖I‖ = 1,
‖Ax‖ ≤ ‖A‖ · ‖x‖ (norm consistency),
‖AB‖ ≤ ‖A‖ · ‖B‖.
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Systems of linear equations Conditioning of the problem

Conditioning of the problem (1/2)

Let us see the conditioning of Ax = b. We suppose that the right side b is the
input of the problem, and x is the output.

Given a small perturbation δx we have:

A(x + δx) = Ax + Aδx = b + δb,

where Aδx = δb.

We have ‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖, which implies 1
‖x‖ ≤

‖A‖
‖b‖ .

Furthermore, ‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖ · ‖δb‖.

Finally,
‖δx‖
‖x‖ ≤ ‖A‖ · ‖A

−1‖‖δb‖
‖b‖ ,
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Systems of linear equations Conditioning of the problem

Conditioning of the problem (2/2)

‖δx‖
‖x‖ ≤

(
‖A‖ · ‖A−1‖

) ‖δb‖
‖b‖

The number κ(A) = ‖A‖ · ‖A−1‖ is the condition number of the matrix A.

The above inequality reads: the relative error of the results is less than the relative
error of the input times the condition number.

The greater κ(A) is, the more ill-conditioned the problem is.
Note that b may contain an error coming from its origin, for instance a
measurement.

Of course, the condition number depends on the chosen norm.
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Systems of linear equations Conditioning of the problem

Example of two sets of linear equations revisited

Let us revisit the example we saw earlier:

A =
(

1 1/2
1/2 1/3

)
and B =

(
1 1/5

1/5 −1

)
,

The inverses are

A−1 =
(

4 −6
−6 12

)
and B−1 ≈

(
0.961538 0.192308
0.192308 −0.961538

)
,

To calculate the condition number κ(A) = ‖A‖ · ‖A−1‖ we use the norm ‖A‖∞:

κ(A) = ‖A‖∞ · ‖A−1‖∞ = 3
2 · 18 = 27 and κ(B) = 18

13 ≈ 1.3846056.

The problem with the matrix A is significantly more ill-conditioned than with the
matrix B. This is in accordance with our previous observations.
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Systems of linear equations Description of the iterative method

Basic iterative methods for Ax = b

We will construct a sequence of vectors x0, x1, x2, . . . which will approximate the
solution of Ax = b.

The vector x0 is chosen randomly.
We choose a regular matrix Q and the following terms will be calculated as

Qxk = (Q − A)xk−1 + b

for all k > 0.

The idea: we choose the matrix Q so that the sequence (xk) converges to some
x∗. Then,

Qx∗ = (Q − A)x∗ + b

and thus
Ax∗ = b.
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Systems of linear equations Description of the iterative method

Convergence - choice of Q

We use the equality xk = Q−1
(
(Q − A)xk−1 + b

)
in

xk − x = Q−1
(
(Q − A)xk−1 + b

)
− x

= (I − Q−1A)xk−1 − x + Q−1b
= (I − Q−1A)xk−1 − (I − Q−1A)x
= (I − Q−1A)(xk−1 − x),

where x is the exact solution satisfying Ax = b.

Denote W = I − Q−1A.

We denote the error vector ek = xk − x . We have ek = Wek−1.

The vector ek will be “smaller” than ek−1 if W is “small”.
“Small” can be determined using norms.

Since ek = W ke0, to lower the error at each step we need to have lim
k→+∞

W k = 0.
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Systems of linear equations Convergence

Convergence vs. spectral radius

The Spectral radius of a matrix M is the number ρ(M) defined as the greatest
eigenvalues (in absolute value), i.e.,

ρ(M) = max{|λ| : λ is an eigenvalue of M},

Theorem
If M ∈ Cn,n, then

lim
k→+∞

Mk = 0 ⇔ ρ(M) < 1,

Thus, in our case, the method converges if and only if

ρ(W ) < 1,

i.e., all the eigenvalues of the matrix W = I − Q−1A are in absolute value less
than 1.
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Systems of linear equations Convergence

Speed of convergence of ek

How fast is the error vector ek converging to 0?

We have
ek = W ke0.

We estimate in norm

‖ek‖ =
∥∥W ke0

∥∥ ≤ ∥∥W k∥∥ · ‖e0‖ ≤ ‖W ‖k · ‖e0‖ .

The condition of convergence ρ(W ) < 1 does not imply anything on the speed
from the previous estimate.

However, the estimate on the right side is strictly decreasing if ‖W ‖ < 1.
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Systems of linear equations Convergence

When to stop? (1/2)

The iterative method is stopped in the step k if xk reaches some desired precision.

The desired precision is given by the nature of the problem.

In the case ‖W ‖ < 1, we know that the sequence (‖ek‖)k is strictly decreasing
and we may stop iterating when

‖ek − ek−1‖ < ε,

where ε is a constant supplied by the user.
This is impractical since we do not have the exact solution.

In the step k we can calculate the so-called residue Axk − b and the
convergence criterion can be set to

‖Axk − b‖ < ε.
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Systems of linear equations Convergence

When to stop? (2/2)

Instead of calculating the residues, one may use a more efficient criterion

‖xk+1 − xk‖ < ε.

We have

‖ek‖ = ‖xk − x‖ = ‖xk − xk+1 + xk+1 − x‖
≤ ‖xk − xk+1‖+ ‖ xk+1 − x︸ ︷︷ ︸

=ek+1

‖

< ε+ ‖W ‖ · ‖ek‖,

where, supposing ‖W ‖ < 1, the last inequality gives

‖ek‖ <
ε

1− ‖W ‖ .

Thus, this criterion can be effectively used if ‖W ‖ < 1, but not too close to 1.
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Systems of linear equations Convergence

Finite precision calculations

All ideas so far were made in the theoretical absolute precision.
In a finite precision, the method may not converge even if ‖W ‖ < 1 due to
rounding errors.

However, an advantage of iterative methods in a finite precision arithmetic is that
at each step the rounding errors from the previous step are “forgotten”. We start
the new iteration with a better approximate solution.

In finite arithmetic the method can diverge even if the problem is not
ill-conditioned.

Thus, in practice, we need another parameter of the method - a maximum
number of iterations. If we reach this number of iterations without satisfying a
convergence criterion, then the method outputs failure.
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Systems of linear equations Concrete algorithms

Choices of Q

Denote by ai,j the entries of the matrix A and denote

L =


0 0 · · · 0

a2,1 0 · · · 0
...

. . . . . .
...

an,1 · · · an,n−1 0

 and D =


a1,1 0 · · · 0

0 a2,2
. . .

...
...

. . . . . . 0
0 · · · 0 an,n

 .

Denote U so that A = L + D + U.

We will mention the following choices of Q:
Richardson method Q = I,
Jacobi method Q = D,

successive overrelaxation / SOR method Q = 1
ω
D + L.
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Systems of linear equations Concrete algorithms

Richardson method

Set Q = I.

The recurrence relation is given by

xk = (I − A)xk−1 + b

The convergence is for a narrow class of matrices: A must be close to I so that

‖I − A‖ < 1.
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Systems of linear equations Concrete algorithms

Jacobi method

Set Q = D.

The recurrence relation is given by

Dxk = (D − A)xk−1 + b = −(L + U)xk−1 + b.

Proposition
If the matrix A is diagonally dominant, then the Jacobi method converges for any
choice of x0.

A matrix is diagonally dominant if, for each row, the sum of the absolute values of
all the entries except the one on the diagonal is less than the absolute value of the
entry on the diagonal.
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choice of x0.

A matrix is diagonally dominant if, for each row, the sum of the absolute values of
all the entries except the one on the diagonal is less than the absolute value of the
entry on the diagonal.
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SOR method

Set Q = 1
ω
D + L, where ω ∈ R \ {0}.

The recurrence relation is given by(
1
ω
D + L

)
xk =

(
1
ω
D + L− A

)
xk−1 + b =

((
−1 + 1

ω

)
D − U

)
xk−1 + b.

Proposition
For 0 < ω < 2 the SOR method converges if A is symmetric, positive definite and
has positive diagonal entries.

The parameter ω is used to speed up the convergence.
The choice ω = 1 is the Gauss-Seidel method.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 9 Fall 2021/2022 43 / 46



Systems of linear equations Concrete algorithms

SOR method

Set Q = 1
ω
D + L, where ω ∈ R \ {0}.

The recurrence relation is given by(
1
ω
D + L

)
xk =

(
1
ω
D + L− A

)
xk−1 + b =

((
−1 + 1

ω

)
D − U

)
xk−1 + b.

Proposition
For 0 < ω < 2 the SOR method converges if A is symmetric, positive definite and
has positive diagonal entries.

The parameter ω is used to speed up the convergence.
The choice ω = 1 is the Gauss-Seidel method.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 9 Fall 2021/2022 43 / 46



Systems of linear equations Concrete algorithms

Algorithm

Inputs: matrices A,Q, vector b, precision ε, maximum number of iterations K .

1. choose x̂0 at random

2. for k from 1 to K do

2.1 x̂k+1 = Q−1(Q − A)x̂k + Q−1b

2.2 if ‖Ax̂k − b‖ < ε, return x̂k (or in general if any convergence criterion is
satisfied)

3. return “no solution found after K steps”.
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Demonstration - Jacobi method (1/2)

Let A =
(
2 1
1 4

)
.

∥∥I − D−1A
∥∥ = 1

2.

We use the Jacobi method to calculate a solution for b = (3, 5)T .
The exact solution is (1, 1)T .

The convergence criterion used is ‖Ax̂k − b‖ < 10−2.

k x̂k ‖Ax̂k − b‖
0 (0.5, 1.5) 1.58113883008
1 (0.75, 1.125) 0.450693909433
2 (0.9375, 1.0625) 0.197642353761
3 (0.96875, 1.015625) 0.0563367386791
4 (0.9921875, 1.0078125) 0.0247052942201
5 (0.99609375, 1.001953125) 0.00704209233489
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Systems of linear equations Concrete algorithms

Demonstration - Jacobi method (2/2)

...the same problem but with a different x̂0, which is further from the exact
solution.

k x̂k ‖Ax̂k − b‖
0 (−10, 10) 28.1780056072
1 (−3.5, 3.75) 9.01734439844
2 (−0.375, 2.125) 3.5222507009
3 (0.4375, 1.34375) 1.1271680498
4 (0.828125, 1.140625) 0.440281337613
5 (0.9296875, 1.04296875) 0.140896006226
6 (0.978515625, 1.017578125) 0.0550351672016
7 (0.9912109375, 1.00537109375) 0.0176120007782
8 (0.997314453125, 1.002197265625) 0.0068793959002
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