NIE-MPI: Tutorial 5

created: November 3, 2021, 12:58

5.1 Subgroups

Exercise 5.1. Which of the following sets forms a subgroup of the group $(\mathbb{Q} \backslash\{0\}, \cdot)$?
(a) The set of all even numbers without zero;
(b) The set of all odd numbers;
(c) $\left\{2^{n}: n \in \mathbb{Z}\right\}$;
(d) $\left\{2^{n} \cdot 3^{m}: n, m \in \mathbb{Z}\right\}$;
(e) $\left\{\frac{1+2 n}{1+2 m}: n, m \in \mathbb{Z}\right\}$.

Exercise 5.2. Find some other subgroup(s) of the group $(\mathbb{Q} \backslash\{0\}, \cdot)$ distinct from the ones in the previous exercise.

Exercise 5.3. Find all subgroups of the group given by following Cayley table:

	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

Hint: when looking for a subgroup, be more specific on what subgroup you look for.
Exercise 5.4. Is $G=(M, \cdot)$ with $M=\{a+b \sqrt{2}: a, b \in \mathbb{Q}, a \neq 0 \vee b \neq 0\}$ a subgroup of the group ($\mathbb{R} \backslash\{0\}, \cdot)$?

Exercise 5.5. Specify the following subgroups of $(\mathbb{Z},+)$.
(a) $\langle 2\rangle$;
(b) $\langle 5\rangle$;
(c) $\langle\{2,3\}\rangle$;
(d) $\langle\{2,4\}\rangle$;
(e) $\langle\{6,12\}\rangle$;
(f) $\langle\{n, m, \ell\}\rangle$ for $n, m, \ell \in \mathbb{N}^{+}$.

5.2 Cyclic groups and generators

Exercise 5.6. Find all generators and all subgroups of $\mathbb{Z}_{11}^{\times}=\left(\mathbb{Z}_{11} \backslash\{0\}, \cdot{ }_{11}\right)$.
Exercise 5.7. Find all generators and all subgroups of $\mathbb{Z}_{13}^{\times}=\left(\mathbb{Z}_{13} \backslash\{0\},{ }_{13}\right)$. Find the inverse elements of 12,5 , and 11 .

Exercise 5.8. What is the probability that an element of \mathbb{Z}_{23}^{\times}chosen randomly is a generator?

Exercise 5.9. Is the number 5 a generator of the group \mathbb{Z}_{23}^{\times}?
What is the least number of "computation steps" needed to decide this question?

