NIE-MPI: Tutorial 6

created: November 3, 2021, 14:28

6.1 Homomorphisms and isomorphisms

Exercise 6.1. Which of the following mappings is a homomorphism and which is a isomorphism from the given group to the given group?
(a) $f(n)=3 n+2$, from $(\mathbb{Z},+)$ to $(\mathbb{R},+)$;
(b) $f(x)=2^{x}$, from $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+}, \cdot\right)$;
(c) $f(A)=A_{1,1}$, from the group of $n \times n$ matrices with the matrix addition (element-wise), denoted $(M,+)$, to $(\mathbb{R},+)$;
(d) $f(A)=A_{1,1}$, from the group of $n \times n$ regular matrices with the matrix multiplication, denoted $\left(M_{\mathrm{reg}}, \cdot\right)$, to $(\mathbb{R} \backslash\{0\}, \cdot)$.

Exercise 6.2. Find some homomorphism from $\left(M_{\mathrm{reg}}, \cdot\right)$ to $(\mathbb{R} \backslash\{0\}, \cdot)$.
Exercise 6.3. Is \mathbb{Z}_{7}^{\times}isomorphic with \mathbb{Z}_{6}^{+}? If yes, find an isomorphism.
Exercise 6.4. How can we find an isomorphism between the groups \mathbb{Z}_{p}^{\times}and \mathbb{Z}_{p-1}^{+}when p is a prime number? How many different isomorphisms exists?

6.2 Permutations

Exercise 6.5. Let us consider the two following permutations in S_{5} :

$$
f=(24513) \quad \text { and } \quad g=(54321) .
$$

(a) Find $g \circ f$.
(b) What is the order of the subgroup $\langle f\rangle$ of S_{5} ? And the order of $\langle g\rangle$?
(c) Find $f^{37} \circ g^{42}$.

6.3 Discrete logarithm

Exercise 6.6. Solve

$$
5^{x} \equiv 12 \quad(\bmod 23)
$$

Exercise 6.7. Alice wants to send a secrete message to Bob during a MPI lecture ${ }^{11}$. So she sends a small paper to Bob via her classmates saying this:

Hi Bertíku, I'm gonna send you a secrete message using Diffie-Hellman protocol. My public key is $(29,8)$ and the encrypted stuff is 24 .

Bob's answer is:
Cool Alenko! Mine is 15.
Alice:
Super cool! Assuming that our shared secret number is n, let us meet on the $(n-2 \bmod 7)$-th day of next week at $(n-7 \bmod 24)$ o'clock in the pub in front of Building number $(2 n+42 \bmod 10)$. See ya!

Where and when are they going to meet? Would it be easier to answer if you knew Alice's (or Bob's) private key?

[^0]
[^0]: ${ }^{1}$ Forgetting that the professor knows the trick too.

