NIE-MPI: Tutorial 6

created: November 3, 2021, 14:28

6.1 Homomorphisms and isomorphisms

Exercise 6.1. Which of the following mappings is a homomorphism and which is a isomorphism from the given group to the given group?

- (a) f(n) = 3n + 2, from $(\mathbb{Z}, +)$ to $(\mathbb{R}, +)$;
- (b) $f(x) = 2^x$, from $(\mathbb{R}, +)$ to (\mathbb{R}^+, \cdot) ;
- (c) $f(A) = A_{1,1}$, from the group of $n \times n$ matrices with the matrix addition (element-wise), denoted (M, +), to $(\mathbb{R}, +)$;
- (d) $f(A) = A_{1,1}$, from the group of $n \times n$ regular matrices with the matrix multiplication, denoted (M_{reg}, \cdot) , to $(\mathbb{R} \setminus \{0\}, \cdot)$.

Exercise 6.2. Find some homomorphism from (M_{reg}, \cdot) to $(\mathbb{R} \setminus \{0\}, \cdot)$.

Exercise 6.3. Is \mathbb{Z}_7^{\times} isomorphic with \mathbb{Z}_6^+ ? If yes, find an isomorphism.

Exercise 6.4. How can we find an isomorphism between the groups \mathbb{Z}_p^{\times} and \mathbb{Z}_{p-1}^+ when p is a prime number? How many different isomorphisms exists?

6.2 Permutations

Exercise 6.5. Let us consider the two following permutations in S_5 :

f = (24513) and g = (54321).

- (a) Find $g \circ f$.
- (b) What is the order of the subgroup $\langle f \rangle$ of S_5 ? And the order of $\langle g \rangle$?
- (c) Find $f^{37} \circ g^{42}$.

6.3 Discrete logarithm

Exercise 6.6. Solve

 $5^x \equiv 12 \pmod{23}$.

Exercise 6.7. Alice wants to send a secrete message to Bob during a MPI lecture¹. So she sends a small paper to Bob via her classmates saying this:

Hi Bertíku, I'm gonna send you a secrete message using Diffie-Hellman protocol. My public key is (29,8) and the encrypted stuff is 24.

Bob's answer is:

Cool Alenko! Mine is 15.

Alice:

Super cool! Assuming that our shared secret number is n, let us meet on the $(n-2 \mod 7)$ -th day of next week at $(n-7 \mod 24)$ o'clock in the pub in front of Building number $(2n + 42 \mod 10)$. See ya!

Where and when are they going to meet? Would it be easier to answer if you knew Alice's (or Bob's) private key?

 $^{^1\}mathrm{Forgetting}$ that the professor knows the trick too.