NIE-MPI: Tutorial 7

created: November 10, 2021, 15:28

7.1 Rings and fields

Exercise 7.1. Which of the following sets, together with the classical addition and multiplication, forms a ring or a field?
(a) The set of all even numbers.
(b) The set of all odd numbers.
(c) The set of non-negative even numbers.
(d) The set of rational numbers.

Exercise 7.2. Is $\left(\mathbb{R}^{n, n},+, \cdot\right)$, i.e., the set of $n \times n$-matrices with matrix multiplication and addition, a ring? Is it a field? If not, how can we change it to get a field?

7.2 Finite fields of order p^{n}

Exercise 7.3. Find the Cayley table for both operations in the field $G F\left(2^{2}\right)$, where the multiplication is done modulo $x^{2}+x-1$. Find neutral elements and generators in the additive group and the multiplicative group of this field. Find also the inverses, for both sum and product, of $x+1$ and x.

Exercise 7.4. Find the Cayley tables (both for addition and for multiplication) for $G F\left(3^{2}\right)$, where the multiplication is done $\bmod x^{2}-x-1$.

Exercise 7.5. Find all irreducible polynomials of degree less than 5 over the ring $\mathbb{Z}_{2}[x]$.
Exercise 7.6. Consider the field $G F\left(2^{3}\right)$, where the multiplication is done $\bmod x^{3}+x+1$.
(a) Decide whether $x^{3}+x+1$ is irreducible over \mathbb{Z}_{2}.
(b) Find the inverse of 010 .
(c) Calculate

$$
100 \cdot(010)^{-1}+010 \cdot 010
$$

Exercise 7.7. In the field $G F\left(3^{3}\right)$ with multiplication modulo $x^{3}+2 x+1$ find
(a) the inverse of 122 ,
(b) all y from this field satisfying

$$
122 \cdot(100+y)=002 .
$$

Exercise 7.8. Let $v(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ be a polynomial from $\mathbb{Z}_{p}[x]$ with p prime and m positive integer. Show that

$$
(v(x))^{p}=v\left(x^{p}\right)
$$

