
MPI - Lecture 10

Conditioning and stability of an algorithm

Recap

Recap: Errors

Definition 1. Let a number α be an approximate value of a number a.

• The absolute error is the value |α− a|.

• For a 6= 0, the relative error is |α− a|
|a|

.

Systems of linear equations

System of linear
equations

We want to solve a system of n linear equations. We write the system in
matrix representation

Ax = b,

where A ∈ Rn,n is regular and b ∈ Rn,1.

This is often a partial subproblem of a larger problem.
Example:
system of linear
equations (1/2)Consider two systems of linear equations with 2 unknowns:(

1 1/2
1/2 1/3

)(
x
y

)
=
(

3/2
1

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(

3/2
1

)
.

The solutions are

(x, y)T = (0, 3)T and (x, y)T = (85/52,−35/52)T ≈ (1.6346,−0.67308)T .
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Let us try to simulate an error on the input, or during a calculation, by

changing the right side to
(

3/2
5/6

)
.

(
1 1/2

1/2 1/3

)(
x
y

)
=
(

3/2
5/6

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(

3/2
5/6

)
.

The solutions change to

(x, y)T = (1, 1)T and (x, y)T = (125/78,−20/39)T ≈ (1.6026,−0.51282)T .

Example:
system of linear
equations (2/2)The change in the right side was(

3/2
1

)
−
(

3/2
5/6

)
=
(

0
1/6

)
,

a vector of Euclidean length 1/6 (the relative error is 0.09).
The change in the solution of the first equation was(

0
3

)
−
(

1
1

)
=
(
−1
2

)

(the relative error is 0.75) and the one in the solution of the second equation(
85/52
−35/52

)
−
(

125/78
−20/39

)
=
(

5/156
−25/156

)
(the relative error is 0.09).

Why is it that the first system is more sensitive to this change? Why are
the two relative errors so different?

Norm - reminder

A norm on a vector space V is a mapping ‖ · ‖ : V 7→ R+
0 which satisfies

1. ‖x‖ = 0 ⇒ x = 0,

2. ‖αx‖ = |α| · ‖x‖,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),
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for all x, y ∈ V and all scalars α.

On Rn (or Cn) the most used norm is probably the Euclidean norm:

‖x‖ =
(

n∑
i=1

x2
i

) 1
2

,

where x = (x1, x2 . . . , xn) ∈ Rn.

Other commonly used norms include

• ‖x‖∞ = max
{
|xi| : i ∈ {1, . . . , n}

}
maximum norm,

• ‖x‖1 =
n∑
i=1
|xi| taxicab or L1 norm.

Matrix norm

Given a vector norm ‖ · ‖, we define the induced matrix norm of the
matrix A ∈ Rn,n (or for A ∈ Cn,n) as follows

‖A‖ = sup
{
‖Ax‖ : x ∈ Rn,1 and ‖x‖ = 1

}
.

Such norm satisfies

• ‖I‖ = 1,

• ‖Ax‖ ≤ ‖A‖ · ‖x‖ (norm consistency),

• ‖AB‖ ≤ ‖A‖ · ‖B‖.

Forward and backzard error

Forward and
backward error

Let V be a numerical algorithm whose theoretical (accurate) output is denoted
by V ∗(d) where d is the input.

The result in the finite arithmetic is denoted V (d). Furthermore, denote
the so-called forward error by ∆v := V ∗(d)− V (d).
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The least (in a norm) number ∆d such that V (d + ∆d) = V ∗(d) is the
backward error.

d+ ∆d

d

V ∗(d)

V (d)

∆d

V

V ∗

V

∆v

If for every input d the backward error is relatively small, we say that the
algorithm is backward stable.

(“Small” depends on the context.)

Conditioning

Conditioning

The conditioning of a problem expresses the dependence of the output on
the inputs - given a little perturbation δd of the input, we look how the output
changes.

The relative condition number of a problem is

Cr = lim
ε→0+

sup
d+δd∈D
‖δd‖≤ε

‖V (d+ δd)− V (d)‖
‖V (d)‖
‖δd‖
‖d‖

,

where D is the domain of V .

If Cr ≈ 1, then we say that the problem is well-conditioned.
If it is large, we say the problem is ill-conditioned.

Conditioning of the problem

Conditioning of
the problem:
System of linear
equationsLet us see the conditioning of Ax = b. We suppose that the right side b is the

input of the problem, and x is the output.
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Given a small perturbation δx we have:

A(x+ δx) = Ax+Aδx = b+ δb,

where Aδx = δb.

We have ‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖, which implies 1
‖x‖
≤ ‖A‖
‖b‖

.

Furthermore, ‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖ · ‖δb‖.

Finally,
‖δx‖
‖x‖

≤ ‖A‖ · ‖A−1‖‖δb‖
‖b‖

,

Conditioning of
the problem:
System of linear
equations‖δx‖

‖x‖
≤
(
‖A‖ · ‖A−1‖

) ‖δb‖
‖b‖

The number κ(A) = ‖A‖ · ‖A−1‖ is the condition number of the matrix
A.

The above inequality reads: the relative error of the results is less than
the relative error of the input times the condition number.

The greater κ(A) is, the more ill-conditioned the problem is.

(Note that b may contain an error coming from its origin, for instance a
measurement.)

Of course, the condition number depends on the chosen norm.
Example of
two sets of
linear equations
revisitedLet us revisit the example we saw earlier:

A1 =
(

1 1/2
1/2 1/3

)
and A2 =

(
1 1/5

1/5 −1

)
,

The inverses are

A−1
1 =

(
4 −6
−6 12

)
and A−1

2 ≈
(

0.961538 0.192308
0.192308 −0.961538

)
,
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To calculate the condition number κ(A) = ‖A‖ · ‖A−1‖ we use the norm
‖A‖∞:

κ(A1) = 3
2 · 18 = 27 and κ(A2) = 18

13 ≈ 1.3846056.

The problem with the matrix A1 is significantly more ill-conditioned
than with the matrix A2. This is in accordance with our previous observa-
tions.

Direct and iterative methods

Directive methods

Direct methods

A direct method calculates a solution of a problem in finitely many steps
such that in absolute theoretical precision in gives the exact solution.

Iterative methods

Idea of iterative
methods

Iterative methods look for approximate solutions to mathematical problems
by constructing a sequence of approximate solutions:

x0, x1, x2, . . .

Every following (approximate) solution is derived from the previous:

xk = T (xk−1),

for k > 0 and some mapping T .

The mapping T is chosen so that the sequence (xi) has a limit which is
the (exact) solution of the problem.

If T is the same for all k, the method is called stationary.
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Description of the iterative method

Basic iterative
methods for
Ax = bWe will construct a sequence of vectors x0, x1, x2, . . . which will approximate

the solution of Ax = b.

The vector x0 is chosen randomly.
We choose a regular matrix Q and the following terms will be calculated

as
Qxk = (Q−A)xk−1 + b

for all k > 0.

The idea: choose the matrix Q so that the sequence (xk) converges to
some x∗. Then,

Qx∗ = (Q−A)x∗ + b

and thus
Ax∗ = b.

Convergence -
choice of Q

We use the equality xk = Q−1((Q−A)xk−1 + b
)
in

xk − x = Q−1((Q−A)xk−1 + b
)
− x

= (I −Q−1A)xk−1 − x+Q−1b
= (I −Q−1A)xk−1 − (I −Q−1A)x
= (I −Q−1A)(xk−1 − x),

where x is the exact solution satisfying Ax = b.

Denote W = I −Q−1A and the error vector ek = xk − x.

We have ek = Wek−1.

The vector ek will be “smaller” than ek−1 if W is “small”.
(“Small” can be determined using norms.)

Since ek = W ke0, to lower the error at each step we need to have lim
k→+∞

W k =
0.
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Convergence

Convergence vs.
spectral radius

The Spectral radius of a matrix M is the number ρ(M) defined as the
greatest eigenvalues (in absolute value), i.e.,

ρ(M) = max{|λ| : λ is an eigenvalue of M},

Theorem 2. If M ∈ Cn,n, then

lim
k→+∞

Mk = 0 ⇔ ρ(M) < 1,

Thus, in our case, the method converges if and only if

ρ(W ) < 1,

i.e., all the eigenvalues of the matrix W = I − Q−1A are in absolute value
less than 1.

Speed of conver-
gence of ek

How fast is the error vector ek converging to 0?

We have
ek = W ke0.

We estimate in norm

‖ek‖ =
∥∥∥W ke0

∥∥∥ ≤ ∥∥∥W k
∥∥∥ · ‖e0‖ ≤ ‖W‖k · ‖e0‖ .

The condition of convergence ρ(W ) < 1 does not imply anything on the
speed from the previous estimate.

However, the estimate on the right side is strictly decreasing if ‖W‖ < 1.
When to stop?
(1/2)
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The iterative method is stop at the step k if xk reaches some desired
precision.

(The desired precision is given by the nature of the problem.)

In the case ‖W‖ < 1, we know that the sequence (‖ek‖)k is strictly de-
creasing and we may stop iterating when

‖ek − ek−1‖ < ε,

where ε is a constant supplied by the user.
This is impractical since we do not have the exact solution.

In the step k we can calculate the so-called residue Axk − b and the
convergence criterion can be set to

‖Axk − b‖ < ε.

When to stop?
(2/2)

Instead of calculating the residues, one may use a more efficient criterion

‖xk+1 − xk‖ < ε.

We have

‖ek‖ = ‖xk − x‖ = ‖xk − xk+1 + xk+1 − x‖
≤ ‖xk − xk+1‖+ ‖xk+1 − x︸ ︷︷ ︸

=ek+1

‖

< ε+ ‖W‖ · ‖ek‖,

where, supposing ‖W‖ < 1, the last inequality gives

‖ek‖ <
ε

1− ‖W‖ .

Thus, this criterion can be effectively used if ‖W‖ < 1, but not too close
to 1.

Finite precision
calculations

All ideas so far were made in the theoretical absolute precision.
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In finite precision the method may not converge even if ‖W‖ < 1 due
to rounding errors.

However, an advantage of iterative methods in a finite precision arithmetic
is that at each step the rounding errors from the previous step are “forgotten”.
We start the new iteration with a better approximate solution.

In finite arithmetic the method can diverge even if the problem is not
ill-conditioned.

Thus, in practice, we need another parameter of the method - a maximum
number of iterations. If we reach this number of iterations without satisfying
a convergence criterion, then the method outputs failure.

Concrete algorithms

Choices of Q

Denote by ai,j the entries of the matrix A and denote

L =


0 0 · · · 0
a2,1 0 · · · 0
... . . . . . . ...

an,1 · · · an,n−1 0

 and D =


a1,1 0 · · · 0

0 a2,2
. . . ...

... . . . . . . 0
0 · · · 0 an,n

 .

Denote U so that A = L+D + U .

We will mention the following choices of Q:

• Richardson method Q = I,

• Jacobi method Q = D,

• successive overrelaxation / SOR method Q = 1
ω
D + L.

Richardson
method

Set Q = I.

The recurrence relation is given by

xk = (I −A)xk−1 + b
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The convergence is for a narrow class of matrices: A must be close to I so
that

‖I −A‖ < 1.

Jacobi method

Set Q = D.

The recurrence relation is given by

Dxk = (D −A)xk−1 + b = −(L+ U)xk−1 + b.

Proposition 3. If the matrix A is diagonally dominant, then the Jacobi
method converges for any choice of x0.

A matrix is diagonally dominant if, for each row, the sum of the absolute
values of all the entries except the one on the diagonal is less than the absolute
value of the entry on the diagonal.

SOR method

Set Q = 1
ω
D + L, where ω ∈ R \ {0}.

The recurrence relation is given by( 1
ω
D + L

)
xk =

( 1
ω
D + L−A

)
xk−1 + b =

((
−1 + 1

ω

)
D − U

)
xk−1 + b.

Proposition 4. For 0 < ω < 2 the SOR method converges if A is symmetric,
positive definite and has positive diagonal entries.

The parameter ω is used to speed up the convergence.
The choice ω = 1 is the Gauss-Seidel method.

Algorithm
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Inputs: matrices A,Q, vector b, precision ε, maximum number of itera-
tions K.

1. choose x̂0 at random

2. for k from 1 to K do

2.1 x̂k+1 = Q−1(Q−A)x̂k +Q−1b

2.2 if ‖Ax̂k − b‖ < ε, return x̂k (or in general if any convergence criterion
is satisfied)

3. return “no solution found after K steps”.

Demonstration -
Jacobi method
(1/2)

Let A =
(

2 1
1 4

)
.

∥∥∥I −D−1A
∥∥∥ = 1

2 .

We use the Jacobi method to calculate a solution for b = (3, 5)T .
The exact solution is (1, 1)T .

The convergence criterion used is ‖Ax̂k − b‖ < 10−2.

k x̂k ‖Ax̂k − b‖
0 (0.5, 1.5) 1.58113883008
1 (0.75, 1.125) 0.450693909433
2 (0.9375, 1.0625) 0.197642353761
3 (0.96875, 1.015625) 0.0563367386791
4 (0.9921875, 1.0078125) 0.0247052942201
5 (0.99609375, 1.001953125) 0.00704209233489

Demonstration -
Jacobi method
(2/2)...the same problem but with a different x̂0, which is further from the exact

solution.
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k x̂k ‖Ax̂k − b‖
0 (−10, 10) 28.1780056072
1 (−3.5, 3.75) 9.01734439844
2 (−0.375, 2.125) 3.5222507009
3 (0.4375, 1.34375) 1.1271680498
4 (0.828125, 1.140625) 0.440281337613
5 (0.9296875, 1.04296875) 0.140896006226
6 (0.978515625, 1.017578125) 0.0550351672016
7 (0.9912109375, 1.00537109375) 0.0176120007782
8 (0.997314453125, 1.002197265625) 0.0068793959002


