NIE-MPI, Mathematics for Informatics - Homework no. 1

Instructions:

- You should try to solve all the exercises. Even if you do not do all the exercises, you can get all the points.
- Presentation is taken into account; correct results themselves are not enough. The reasoning on how the result was found should be clearly visible.
- Comment your calculations in a reasonable way: the reader should understand what you do and why. The solution should be "possible to read", not "needed to decrypt".
- Do not answer unasked questions. It is important to know what is needed to solve the problem and what is not needed.
- If you use a result from another source than the lectures and tutorials, cite your source properly (do not forget to cite used software if applicable).
- The homework should be given by hand or sent by email at dolcefra@fit.cvut.cz before the beginning of the lecture on Monday October 17th, 2021.

Exercise 1. Find all minima, maxima and saddle points of the following functions:
(a) $f(x, y)=x^{2}-x y+3 y^{2}$,
(b) $f(x, y)=x^{4}-x y+y^{4}$,
(c) $f(x, y)=\frac{1}{2 x}+3 x y$,
(d) $f(x, y)=x^{2} \ln x+y^{2} \ln y+\sqrt{3}$,
(e) $f(x, y, z)=x^{2}+e^{-y z}-y z$.

Exercise 2. Find minima, maxima and saddle points of the following functions:
(a) $f(x, y)=x-y^{2}$ subject to $\frac{x^{2}}{4}+y^{2}=1$,
(b) $f(x, y, z)=x y+y z+z$ subject to $x y z=1$.

Exercise 3. Calculate

$$
\iint_{D} x^{2}-y \mathrm{~d} x \mathrm{~d} y
$$

where D is equal to:
(a) $[-1,2] \times[0,2]$;
(b) the triangle with vertices $(0,0),(1,0)$ and $(1,2)$;
(c) the bounded subset of $\left(\mathbb{R}^{+}\right)^{2}$ which is delimited by the x-axis, the curve having equation $y=4-x^{2}$ and the line having equation $y=3 x$.

