NIE-MPI: Tutorial 1

created: September 18, 2022, 17:47

1.1 Functions

Exercise 1.1. Let f(x) = sin(x) and $g(x) = (x-3)^3$. Find a formula for the following composite functions:

- (a) $(f \circ g)(x)$,
- (b) $(g \circ f)(x)$,
- (c) $(f \circ g^{-1})(x)$,
- (d) $(g^{-1} \circ f)(x)$.

1.2 Derivatives

Exercise 1.2. Find the derivative of the following functions:

- (a) $(x^4 + 3x^3)x^8$, (b) e^{2x} , (c) $\frac{x+3}{x^2}$, (d) $\ln((x+4)^{15})$, (e) $\sin^2 x + \cos^2 x$, (f) xe^{2x} , (g) e^{x^2} ,
- (h) x^{x} .

Exercise 1.3. Let P be the set of all real polynomials. Is the set P closed under differentiation? In other words: is is true that $p \in P \Rightarrow p' \in P$?

Exercise 1.4. Let $p(x) = \sum_{k=0}^{n} a_k x^k$ be a polynomial of degree n (i.e., $a_n \neq 0$), where $n \in \mathbb{N}$. Find the *n*-th derivative $p^{(n)}$.

Exercise 1.5. Find the *n*-th derivative of $\sin x$. Try to express the result as simply as possible.

1.3 Partial derivative

Exercise 1.6. Find the following partial derivatives:

(a) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for (b) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for

$$f(x,y) = x^2 y^3 + x^3 y^4 - e^{xy^2},$$

(c) find the value of $\frac{\partial f}{\partial z}$ at point (1, 2, 3) for

$$f(x, y, z) = \sin\left(\frac{xy}{z}\right),$$

(d) $\frac{\partial f}{\partial x}$ for

$$f(x,y) = e^{-x^2 - y^2},$$

(e) $\frac{\partial f}{\partial x}$ for

$$f(x,y) = \ln(x^2 + y^2 + 1),$$

(f) $\frac{\partial f}{\partial x}$ for

$$f(x,y) = \frac{1}{x^3 + y^3}.$$

Exercise 1.7. Find $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial y^2}$ for:

(a) f(x, y) = x²y²,
(b) f(x, y) = sin(xy),
(c) f(x, y) = xy² − ye^{-x} − cos(x − y).
Exercise 1.8. Find the mixed partial derivatives ∂²f/∂x∂y and ∂²f/∂y∂x for:

(a) $f(x, y, z) = e^{xz} + y \cos x$,

(b) $f(x, y, z) = z \cos(xy) + x \sin(yz)$.