NIE-MPI: Tutorial 3

created: October 10, 2022, 10:31

3.1 Constrained optimization

Exercise 3.1. Find all the local maxima and minima of the function $f(x, y)=3 x-4 y+3$ subject to

$$
x^{2}+y^{2}=4 .
$$

Exercise 3.2. Find all the local maxima and minima of the function $f(x, y)=x y$ subject to

$$
x+y=1 .
$$

Exercise 3.3. Find all the local maxima and minima of the function $f(x, y)=x^{2}+y^{2}$ subject to

$$
\frac{x}{a}+\frac{y}{b}=1
$$

where a and b are non-zero real numbers.
Exercise 3.4. Find all the local maxima and minima of the function $f(x, y)=2 x^{2}-2 y^{2}$ subject to

$$
y+e^{-x^{2}}=1
$$

3.2 2-variate function integration

Exercise 3.5. Let $f(x, y)=e^{2 x+y}$ and $D=[0,1] \times[0,3]$. Evaluate

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

Exercise 3.6. Let $f(x, y)=\sin (x+y)$ and $D=[0, \pi] \times[0,2 \pi]$. Evaluate

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

Exercise 3.7. Find the volume of the solid object delimited by the graph of

$$
f(x, y)=x^{2}+y^{2}
$$

and by the planes $x=0, x=3, y=-1$ and $y=1$ (the volume is positive for $z>0$ and negative for $z<0$).

Exercise 3.8. Let $f(x, y, z)=x+2 y+3 z$ and $D=[0,1] \times\left[-\frac{1}{2}, 0\right] \times\left[0, \frac{1}{3}\right]$. Evaluate

$$
\iiint_{D} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

Exercise 3.9. Let $f(x, y, z)=e^{x+y+z}$ and $D=[0,1] \times[0,1] \times[0,1]$. Evaluate

$$
\iiint_{D} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

Integrals over non-rectangular domain

Exercise 3.10. Evaluate

$$
\iint_{D}(x+y) \mathrm{d} x \mathrm{~d} y
$$

where D is the domain delimited by the graph of $y=x^{2}$ for $x \in\left[0, \frac{1}{2}\right]$ and the x-axis.
Exercise 3.11. Evaluate

$$
\iint_{D}(x+y)^{2} \mathrm{~d} x \mathrm{~d} y
$$

where D is the triangular surface with vertices $(0,0),(0,1)$ and $(2,2)$.
Exercise 3.12. Evaluate

$$
\int_{0}^{1} \int_{x}^{1} x y \mathrm{~d} y \mathrm{~d} x
$$

Exercise 3.13. Evaluate

$$
\int_{0}^{1} \int_{1-y}^{1}\left(x+y^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

Exercise 3.14. Evaluate

$$
\iint_{D}(x-y) \mathrm{d} x \mathrm{~d} y
$$

where D is the triangular surface with vertices $(0,0),(1,0)$ and $(2,1)$.

