NIE-MPI: Tutorial 4

created: October 24, 2022, 11:59

4.1 Algebra

Exercise 4.1. Find out which of the following groupoids is a group and which is an Abelian group.

- (a) $(\mathbb{N}, +)$, where \mathbb{N} is the set of natural (non-negative) integers;
- (b) $(\mathbb{Z}, +)$, where \mathbb{Z} is the set of integers;
- (c) (\mathbb{R}, \cdot) , where \mathbb{R} is the set of real numbers;
- (d) $(\mathbb{C}, +)$, where \mathbb{C} is the set of complex numbers.

Exercise 4.2. Which of the following couples forms a group?

- (a) $(\mathbb{Z}^{-}, +)$, where \mathbb{Z}^{-} is the set of negative integers;
- (b) $(\mathbb{Q}, +)$, where \mathbb{Q} is the set of rational numbers;
- (c) $(\mathbb{Q}_0^+, +)$, where \mathbb{Q}_0^+ is the set of non-negative rational numbers;
- (d) $(\{-1,1\},+);$
- (e) $(\{-1,1\},\cdot).$

Exercise 4.3. Which of the following sets with the operation \circ defined for all a, b by

 $a \circ b := a^b$

forms a groupoid/semigroup/group/Abelian group?

- (a) $(\mathbb{Q}, \circ);$
- (b) $(\mathbb{N}, \circ);$
- (c) $(\{-1,1\},\circ)$.

Exercise 4.4. Which of the following sets of complex square matrices creates a group with the common matrix multiplication?

(a) Real matrices;

- (b) Regular real matrices;
- (c) Regular diagonal real matrices;
- (d) Upper (lower) regular triangular real matrices.

Exercise 4.5. Let us consider the set $M := \mathbb{Z} \times \mathbb{Z} \times \{1, -1\}$ and the operation \otimes on it defined by:

$$(k_1, \ell_1, 1) \otimes (k_2, \ell_2, \varepsilon) := (k_1 + k_2, \ell_1 + \ell_2, \varepsilon)$$

$$(k_1, \ell_1, -1) \otimes (k_2, \ell_2, \varepsilon) := (k_1 + k_2, \ell_1 + \ell_2, -\varepsilon)$$

for $\varepsilon \in \{1, -1\}$. Is (M, \otimes) a group?

Exercise 4.6. Let us define the operations \sqcap and \triangle on \mathbb{R} as:

 $a \sqcap b := a + b + 1$ and $a \triangle b := a + b + ab$

for arbitrary $a, b \in \mathbb{R}$. Prove that

- (a) (\mathbb{R}, \Box) is an Abelian group;
- (b) (\mathbb{R}, Δ) is not a group.

Exercise 4.7. Let ρ be a plane. For arbitrary points $A, B \in \rho$ let $A \star B$ be the central point of the segment AB. Is (ρ, \star) a group?

Exercise 4.8. Let us consider the set \mathbb{N} and the operation \wedge such that for arbitrary $a, b \in \mathbb{N}$ we have $a \wedge b$ equal to the greatest common divisor of a, b. Is (N, \wedge) a group?

Exercise 4.9. Decide whether the following table is the Cayley table of a group:

	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

How can we recognize that it is Cayley table of an Abelian group?