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Example 1. Consider the set Zio = {0,1,2,...,11} with the addition mod 12.
o the set 712 is closed under this operation, i.e., it is a groupoidgroupoid;
e the operation is associative, so it is a SEMIGroupsemigroup;
e the number 0 is the neutral element, so it is a monoidmonoid;

o the inverse of k # 0 is 12 — k and the inverse of 0 is 0, so it is a
groupgroup;

e the operation is commutative, thus we have an Abelian group.

Let Z, = {0,1,2,...,n — 1} be the set of the residue classes modulo n.

The group (Zn, +(mod n)) 18 the additive group modulo n; it is denoted by
ZY.

n

Example (2/4)

Question: Which other set M forms a group with the addition (mod 12)7

In order for the operation to be well defined, we must have M C Zqo:

Question (refined): Which subset of Z;5 forms a group with the addition
(mod 12)7

Answer: There are quite a lot of them. To find out how to discover them,
let us ask this subquestion:

Sub-question: Which is the smallest subset of Zis that forms a group
with addition (mod 12) and contains the number 27

Example (3/4)

We are looking for a set M C Zi2 such that 2 € M and (M, +(oq 12)) 18
a group:

e M must be closed under addition mod 12:

— it must contain 2+4+2=4,2+4=6,4+6 =10, ...

— the set {0,2,4,6,8,10} is closed under this operation, so we have a
groupoid;



e the operation remains associative, so it is a semigroup;

e 0 remains the neutral element, so it is a monoid;

e cach element has its inverse in the set (the set is closed under inversion),
so it is a group.

The wanted set is M = {0,2,4,6,8,10}.
We say that M is a subgroup generated by the set {2}.

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed
for others elements of Zs:

{0} — {0}
{1} > {0,1,2,3,4,5,6,7,8,9,10,11} « {11}

{2} > {0,2,4,6,8,10} « {10}
{3} — {0,3,6,9} «— {9}
{4} — {0,4,8} + {8}

{5} —» {0,5,10,3,8,1,6,11,4,9,2,7} « {7}
{6} — {0,6}

Back to the original question: there exist 6 different sets M C Zis
such that (M, +(mod 12)) is a group.



Subgroups
Definition and basic properties

Definition of

subgroup
Definition 2. Let G = (M, o) be a group.
A subgroup of the group G is a pair H = (N, o) such that:
e NC M and N # (),
e H is a group.
e Idea of substructures with the same properties as the original structure:
compare for instance with a subspace of a linear (vector) space.
e Similarly, we can define subgroupoids, subsemigroups, submonoids,. . .
e A binary operation in the group G = (M, o) is a function from M x M
to M.
The operation in a subgroup H = ([N, 0) is, to be precise, the restriction
of this operation to the set N x V.
Trivial and
proper sub-

In each group G = (M, o), there always exist at least two subgroups (if M "
contains only one element the two coincide):

e the group containing only the neutral element: ({e},o), and

e the group itself G = (M, o).

These two groups are the trivial subgroups.
Other subgroups are non-trivial or proper subgroups.

Question 3. If H is a subgroup of a group G, is the neutral element of H
identical to the neutral element of G?

Intersection of
subgroups




Theorem 4. Let Hi, Ho, ..., H,, whith n > 1, be subgroups of a group G =
(M,o). Then
H= (] H
i=1.2,...n

is also a subgroup of G.

Power of an ele-
ment

Definition 5. Let G = (M, 0) be a group with neutral element e. We define
for each element a € M and each positive n € N the n-th power of the element
a as

CLO = €
a” = aoao---0a
n times
a " = (a—l)n —alo a—l 0---0 a—l
n times

Note that a o a o --- o a can by written without brackets thanks to as-
sociativity (for a non-associative operation the result would depend on the
order. .. ).

For all n,m € N the following “natural” equalities are true:

° an+m — an Oam’

For the additive notation of a group G = (M, +), we define the n-th
multiple of the element a and we denote it by n xa (resp. —nxa = nx(—a)).



Order of a subgroup

Order of a
(sub)group

Definition 6. The order of a (sub)group G = (M,o), denoted |G|, is its
number of elements. If M is an infinite set, the order is infinite.
According to the order we distinguish between finite and infinite groups.

Example 7. The group ZE is of order 12. It has 6 subgroups:

e two trivial: {0} and {0,1,2,3,4,5,6,7,8,9,10,11};

e and four proper: {0,6}, {0,4,8}, {0,3,6,9}, and {0,2,4,6,8,10}.
of order 1, 2, 3, 4, 6 and 12.

(Left) cosets of a
subgroup

Let G be a group and H be one of its subgroups.
The (left) coset of H in G with respect to an element g € G is the set

gH ={gh:h e H} (or g+ H in additive notation)

Example 8. Let us consider the subgroup H = {0,3,6,9} of Z12.
Find g+ H for all g € Zq>.

The index of H in G, denoted [G : H], is the number of different cosets of
Hin G.

Lagrange’s The-
orem

Theorem 9. Let H be a subgroup of a finite group G. The order of H divides
the order of G.
More precisely, |G| =[G : H] - |H|.

This statement connects the abstract structure of a group with divisibility
and also with the notion of prime numbers!

Consequence: A group with prime order has only trivial subgroups!

To prove Lagrange’s Theorem we need the following lemma.

Lemma 10. For all a,b € G one has |aH| = |bH]|.

Question 11. Let G be a group of order n and k € N be such that k|n.
Is there any subgroup of G of order k¢



Groups generated by a set

Group gener-
ated by a set
(1/2)

Question: How to find the smallest subgroup of a group G = (M, o) contain-
ing a given nonempty set N C M?

Definition 12. Let G = (M, o) be a group and N C M a nonempty set. The
smallest subgroup of G containing N is the subgroup generated by N and is
denoted by (N).

In particular, for a singleton N = {a} we use the notation (a) = ({a}).
Example 13. For the group Z,, we have proven that (2) = ({0,2,4,6,8,10}, +mod 12)-

Definition 14. If for a set M it holds that (M) = G, we say that M is a
generating set of G.

Group gener-
ated by a set
(2/2)

Example 15. The group Z{, is generated, for instance, by the sets {1} and

{5}, i.e.
(1) = (5) = Zj.

Theorem 16. Let G = (M, o) be a group and N C M a nonempty set. The
following holds:
o the subgroup (N) equals the intersection of all subgroups containing N,
i.e.
(N) = ﬂ{H H is a subgroup of G containing N }

e all elements in (N) can be obtained by means of “group span”, i.e.,

{alfloaé”o-uaﬁ" :neN, a; €N, k‘iEZ}.



Cyclic groups
Examples

Groups gen-
erated by one
element (1/2)

We have seen that the additive group Z, is equal to (1), (5), (7), and (11).

The following theorem generalize this fact.

Theorem 17. An additive group modulo n is equal to (k) if and only if k and
N are coprimes.

Proof. This statement is a consequence of a general theorem which will be
proven later and of the fact that Z = (1) for all n > 2. O

Groups gen-
erated by one
element (2/2)

The group ({1,2,...,p — 1}, (mod p)), Where p is a prime number, is the
multiplicative group modulo p, denoted Z;.

Example 18. Is there a one-element set generating the group 71 ?
Yes, for example (2) = 77.
On the other hand, (3) = ({1,3,4,5,9}, " (mod 11))-

Finding the generator(s) of a multiplicative group Z; is more complicated

than for an additive group Z'.
Multiplicative groups have more complicated and interesting structure.



. 21 22 23 24 25 26 27 28 29 210 211 212
(mod 13)
* 2 4 8 3 6 12119 5 107 1
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* 2 4 8 3 6 12119 5 107 1

Definition

Definition of
cyclic group

Definition 19. A group G = (M, o) is cyclic if there exists an element a € M
such that (a) = G.
This element is a generator of the cyclic group.

e 7! is a cyclic group for every n and its generators are all positive num-
bers k < n coprime with n.

e The infinite group (Z,+) is cyclic and it has just two generators: 1 and
—1.

e 77 is cyclic, and 2 is a generator.

Why “cyclic”?

Consider the multiplicative group Z75.

If we repeatedly compose the generator 2 with itself we successively get all
clements of the group: 2! =2, 22 =4, 23=8, 2¢=3 .., 22=1.

The 13-th power is again the number 2 and so the sequence of powers is
indeed stuck in a cycle.

subgroups: {1,3,4,9,10,12} {1,5,8,12} {1,3,9} ,{1,12}.

generators: 2, 6, 7, 11.
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. 21 22 23 24 25 26 27 28 29 210 211 212
(mod 13)
* 2 4 8 3 6 12119 5 107 1

. 1 92 93 5 96 97 9 910 911
(mod 13) 2t 22 2 22 2% 2 27 2702
* 2 4 8 3 6 12119 5 107 1

2l 92 93 24 95 2@2
(mod 13)

2 4 8 3 6 12119 5 107 1

Fermat’s Theorem

Fermat’s Theo-
rem (1/2)

Theorem 20. In a cyclic group G = (M,o) of order n, for all elements
a € M, it holds that

a*=e

Where e is the neutral element of G.

Proof. Consider a sequence of elements from M: a,a®, a® a*, ...

Denote ¢ the smallest number such that a? = e. Clearly ¢ < n (why?!)

The set a,a?,--- ,a? is the subgroup (a) and has order g.

By Lagrange’s Theorem, we have that q divides n, i.e,. there exists k € N
such that n = gk.

(mod 13)." 2t XX K 25K 27 X R K021 X2
T2 XX X6 R1IIXXXNT X
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We have a” = a® = (a9)F = ek = e. O

Fermat’s Theo-
rem (2/2)

Z; is always a cyclic group (it is not trivial to prove it) and its order is
p— 1.

Applying the previous theorem to Z; we obtain the well-known Fermat’s
Little Theorem.

Corollary 21 (Fermat’s Little Theorem). For an arbitrary prime number p
and an arbitrary 1 < a < p we have that

a?~! =1 (mod p).

Find the generators

How to find all
generators (1/2)

Generally, to find all generators is not an easy task (e.g., in groups Z;; we are
not able to do it algorithmically); but if we have one, it is easy to find all the
others.

Theorem 22. If (G,0) is a cyclic group of order n and a is one of its gener-
ator, then a* is a generator if and only if k and n are coprime.

To prove the previous theorem we use the following

Lemma 23. Let D = {mk + {n | m,l € Z}.
Then ged(k,n) = min{|a| | a € D\ {0}}.

How to find all
generators (2/2)

Corollary 24. In a cyclic group of order n, the number of all generators is
equal to o(n).

Where ¢ is the Euler’s (totient) function, which assigns to each integer n
the number of integers less than n that are coprime with n

Z; is a cyclic group of order p — 1 and thus it has ¢(p — 1) generators.

An effective algorithm for evaluating ¢(n) does not exist; if it existed, we
would be able to find the integer factorization of arbitrarily large n and RSA
would not be safe!
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(mod 13)
* 2 4 8 3 6 12119 5 107 1

. 21 22 23 24 25 26 27 28 29 21() 211 212
(mod 13)
* 2 4 8 3 6 12119 5 107 1

. 21 22 23 24 25 26 27 28 29 210 211 212
(mod 13)
* 2 4 8 3 6 12119 5 107 1

Subgroups of cyclic groups

Subgroups of
cyclic group are
cyclic

Theorem 25. Any subgroup of a cyclic group is again a cyclic group.

Consider again the multiplicative group Z5.
subgroups: {1,3,4,9,10,12} , {1,5,8,12} , {1,3,9} , {1,12}.
generators: 2, 6, 7, 11.

Order of an element

Order of an ele-
ment

/ ¥ \

. 1 92 93 91 95 o6 o7 98 09 ol0 oll 512
(mod 13) 20 29 22 20 22 20 20 00 27 20 2% 0
. 2 4 8 3 6 12119 5 107 1
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2l 92 93 24 95 2@2
(mod 13)

2 4 8 3 6 12119 5 107 1

(mod 13) 2l 2 % K 25 % 27 X K X012
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Let G be a group and g € G.
The order of g (in G) is the order of the group that is generated by g.

In the finite case, we have the equivalence order(g) = #(g).

Example 26. Find the order of all elements in Z2 and in Z5 .



