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Reminder and Motivation
Reminder of the
last lecture

Hierarchy of structures of type “a set and a binary operation”

grupoid

semigroup

monoid

group

Abelian group

associativity

neutral element

inverse element

commutativity

Example (1/4)
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Example 1. Consider the set Z12 = {0, 1, 2, . . . , 11} with the addition mod 12.

• the set Z12 is closed under this operation, i.e., it is a groupoidgroupoid;

• the operation is associative, so it is a semigroupsemigroup;

• the number 0 is the neutral element, so it is a monoidmonoid;

• the inverse of k 6= 0 is 12 − k and the inverse of 0 is 0, so it is a
groupgroup;

• the operation is commutative, thus we have an Abelian group.

Let Zn = {0, 1, 2, . . . , n− 1} be the set of the residue classes modulo n.

The group (Zn, +(mod n)) is the additive group modulo n; it is denoted by
Z+

n .
Example (2/4)

Question: Which other set M forms a group with the addition (mod 12)?

In order for the operation to be well defined, we must have M ⊂ Z12:

Question (refined): Which subset of Z12 forms a group with the addition
(mod 12)?

Answer: There are quite a lot of them. To find out how to discover them,
let us ask this subquestion:

Sub-question: Which is the smallest subset of Z12 that forms a group
with addition (mod 12) and contains the number 2?

Example (3/4)

We are looking for a set M ⊂ Z12 such that 2 ∈ M and (M, +(mod 12)) is
a group:

• M must be closed under addition mod 12:

– it must contain 2 + 2 = 4, 2 + 4 = 6, 4 + 6 = 10, . . .

– the set {0, 2, 4, 6, 8, 10} is closed under this operation, so we have a
groupoid;



3

• the operation remains associative, so it is a semigroup;

• 0 remains the neutral element, so it is a monoid;

• each element has its inverse in the set (the set is closed under inversion),
so it is a group.

The wanted set is M = {0, 2, 4, 6, 8, 10}.
We say that M is a subgroup generated by the set {2}.

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed
for others elements of Z12:

{0} → {0}
{1} → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ← {11}
{2} → {0, 2, 4, 6, 8, 10} ← {10}
{3} → {0, 3, 6, 9} ← {9}
{4} → {0, 4, 8} ← {8}
{5} → {0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7} ← {7}
{6} → {0, 6}

Back to the original question: there exist 6 different sets M ⊆ Z12
such that (M, +(mod 12)) is a group.



4

Subgroups

Definition and basic properties

Definition of
subgroup

Definition 2. Let G = (M, ◦) be a group.
A subgroup of the group G is a pair H = (N, ◦) such that:

• N ⊆M and N 6= ∅,

• H is a group.

• Idea of substructures with the same properties as the original structure:
compare for instance with a subspace of a linear (vector) space.

• Similarly, we can define subgroupoids, subsemigroups, submonoids,. . .

• A binary operation in the group G = (M, ◦) is a function from M ×M
to M .
The operation in a subgroup H = (N, ◦) is, to be precise, the restriction
of this operation to the set N ×N .

Trivial and
proper sub-
groupsIn each group G = (M, ◦), there always exist at least two subgroups (if M

contains only one element the two coincide):

• the group containing only the neutral element: ({e}, ◦), and

• the group itself G = (M, ◦).

These two groups are the trivial subgroups.
Other subgroups are non-trivial or proper subgroups.

Question 3. If H is a subgroup of a group G, is the neutral element of H
identical to the neutral element of G?

Intersection of
subgroups
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Theorem 4. Let H1, H2, . . . , Hn, whith n ≥ 1, be subgroups of a group G =
(M, ◦). Then

H ′ =
⋂

i=1,2,...,n

Hi

is also a subgroup of G.

Power of an ele-
ment

Definition 5. Let G = (M, ◦) be a group with neutral element e. We define
for each element a ∈M and each positive n ∈ N the n-th power of the element
a as

a0 = e
an = a ◦ a ◦ · · · ◦ a︸ ︷︷ ︸

n times
a−n = (a−1)n = a−1 ◦ a−1 ◦ · · · ◦ a−1︸ ︷︷ ︸

n times

Note that a ◦ a ◦ · · · ◦ a can by written without brackets thanks to as-
sociativity (for a non-associative operation the result would depend on the
order. . . ).

For all n, m ∈ N the following “natural” equalities are true:

• an+m = an ◦ am,

• anm = (an)m.

For the additive notation of a group G = (M, +), we define the n-th
multiple of the element a and we denote it by n×a (resp. −n×a = n×(−a)).
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Order of a subgroup

Order of a
(sub)group

Definition 6. The order of a (sub)group G = (M, ◦), denoted |G|, is its
number of elements. If M is an infinite set, the order is infinite.

According to the order we distinguish between finite and infinite groups.

Example 7. The group Z+
12 is of order 12. It has 6 subgroups:

• two trivial: {0} and {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};

• and four proper: {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, and {0, 2, 4, 6, 8, 10}.

of order 1, 2, 3, 4, 6 and 12.

(Left) cosets of a
subgroup

Let G be a group and H be one of its subgroups.
The (left) coset of H in G with respect to an element g ∈ G is the set

gH = {gh : h ∈ H} (or g + H in additive notation)

Example 8. Let us consider the subgroup H = {0, 3, 6, 9} of Z12.
Find g + H for all g ∈ Z12.

The index of H in G, denoted [G : H], is the number of different cosets of
H in G.

Lagrange’s The-
orem

Theorem 9. Let H be a subgroup of a finite group G. The order of H divides
the order of G.

More precisely, |G| = [G : H] · |H|.

This statement connects the abstract structure of a group with divisibility
and also with the notion of prime numbers!

Consequence: A group with prime order has only trivial subgroups!
To prove Lagrange’s Theorem we need the following lemma.

Lemma 10. For all a, b ∈ G one has |aH| = |bH|.

Question 11. Let G be a group of order n and k ∈ N be such that k|n.
Is there any subgroup of G of order k?
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Groups generated by a set

Group gener-
ated by a set
(1/2)Question: How to find the smallest subgroup of a group G = (M, ◦) contain-

ing a given nonempty set N ⊂M?

Definition 12. Let G = (M, ◦) be a group and N ⊂M a nonempty set. The
smallest subgroup of G containing N is the subgroup generated by N and is
denoted by 〈N〉.

In particular, for a singleton N = {a} we use the notation 〈a〉 = 〈{a}〉.

Example 13. For the group Z+
12, we have proven that 〈2〉 = ({0, 2, 4, 6, 8, 10}, +mod 12).

Definition 14. If for a set M it holds that 〈M〉 = G, we say that M is a
generating set of G.

Group gener-
ated by a set
(2/2)

Example 15. The group Z+
12 is generated, for instance, by the sets {1} and

{5}, i.e.
〈1〉 = 〈5〉 = Z+

12.

Theorem 16. Let G = (M, ◦) be a group and N ⊂ M a nonempty set. The
following holds:

• the subgroup 〈N〉 equals the intersection of all subgroups containing N ,
i.e.

〈N〉 =
⋂
{H : H is a subgroup ofG containingN}

• all elements in 〈N〉 can be obtained by means of “group span”, i.e.,{
ak1

1 ◦ ak2
2 ◦ · · · a

kn
n : n ∈ N, ai ∈ N, ki ∈ Z

}
.
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Cyclic groups

Examples

Groups gen-
erated by one
element (1/2)

We have seen that the additive group Z+
12 is equal to 〈1〉, 〈5〉, 〈7〉, and 〈11〉.

The following theorem generalize this fact.

Theorem 17. An additive group modulo n is equal to 〈k〉 if and only if k and
n are coprimes.

Proof. This statement is a consequence of a general theorem which will be
proven later and of the fact that Z+

n = 〈1〉 for all n ≥ 2.

Groups gen-
erated by one
element (2/2)The group ({1, 2, . . . , p − 1}, ·(mod p)), where p is a prime number, is the

multiplicative group modulo p, denoted Z×p .

Example 18. Is there a one-element set generating the group Z×11?

Yes, for example 〈2〉 = Z×11.

On the other hand, 〈3〉 = ({1, 3, 4, 5, 9}, ·(mod 11)).

Finding the generator(s) of a multiplicative group Z×p is more complicated
than for an additive group Z+

n .
Multiplicative groups have more complicated and interesting structure.
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21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)

21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)

Definition

Definition of
cyclic group

Definition 19. A group G = (M, ◦) is cyclic if there exists an element a ∈M
such that 〈a〉 = G.

This element is a generator of the cyclic group.

• Z+
n is a cyclic group for every n and its generators are all positive num-

bers k ≤ n coprime with n.

• The infinite group (Z, +) is cyclic and it has just two generators: 1 and
−1.

• Z×11 is cyclic, and 2 is a generator.

Why “cyclic”?

Consider the multiplicative group Z×13.

If we repeatedly compose the generator 2 with itself we successively get all
elements of the group: 21 = 2, 22 = 4, 23 = 8, 24 = 3, . . ., 212 = 1.

The 13-th power is again the number 2 and so the sequence of powers is
indeed stuck in a cycle.

subgroups: {1, 3, 4, 9, 10, 12} ,{1, 5, 8, 12} ,{1, 3, 9} ,{1, 12}.
generators: 2, 6, 7, 11.
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Fermat’s Theorem

Fermat’s Theo-
rem (1/2)

Theorem 20. In a cyclic group G = (M, ◦) of order n, for all elements
a ∈M , it holds that

an = e

Where e is the neutral element of G.

Proof. Consider a sequence of elements from M : a, a2, a3, a4, . . .
Denote q the smallest number such that aq = e. Clearly q ≤ n (why?!)
The set a, a2, · · · , aq is the subgroup 〈a〉 and has order q.
By Lagrange’s Theorem, we have that q divides n, i.e,. there exists k ∈ N

such that n = qk.

21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)
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We have an = aqk = (aq)k = ek = e.

Fermat’s Theo-
rem (2/2)

Z×p is always a cyclic group (it is not trivial to prove it) and its order is
p− 1.

Applying the previous theorem to Z×p we obtain the well-known Fermat’s
Little Theorem.

Corollary 21 (Fermat’s Little Theorem). For an arbitrary prime number p
and an arbitrary 1 ≤ a < p we have that

ap−1 ≡ 1 (mod p).

Find the generators

How to find all
generators (1/2)

Generally, to find all generators is not an easy task (e.g., in groups Z×p we are
not able to do it algorithmically); but if we have one, it is easy to find all the
others.

Theorem 22. If (G, ◦) is a cyclic group of order n and a is one of its gener-
ator, then ak is a generator if and only if k and n are coprime.

To prove the previous theorem we use the following

Lemma 23. Let D = {mk + `n | m, ` ∈ Z}.
Then gcd(k, n) = min{|a| | a ∈ D \ {0}}.

How to find all
generators (2/2)

Corollary 24. In a cyclic group of order n, the number of all generators is
equal to ϕ(n).

Where ϕ is the Euler’s (totient) function, which assigns to each integer n
the number of integers less than n that are coprime with n

Z×p is a cyclic group of order p− 1 and thus it has ϕ(p− 1) generators.
An effective algorithm for evaluating ϕ(n) does not exist; if it existed, we

would be able to find the integer factorization of arbitrarily large n and RSA
would not be safe!
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Subgroups of cyclic groups

Subgroups of
cyclic group are
cyclicTheorem 25. Any subgroup of a cyclic group is again a cyclic group.

Consider again the multiplicative group Z×13.
subgroups: {1, 3, 4, 9, 10, 12} , {1, 5, 8, 12} , {1, 3, 9} , {1, 12}.
generators: 2, 6, 7, 11.

Order of an element

Order of an ele-
ment

21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)
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Let G be a group and g ∈ G.
The order of g (in G) is the order of the group that is generated by g.

In the finite case, we have the equivalence order(g) = #〈g〉.

Example 26. Find the order of all elements in Z×5 and in Z×7 .


