MPI - Lecture 5

Outline

- Reminder and motivation
- Subgroups
- Groups generated by a set
- Cyclic groups

Reminder and Motivation

Reminder of the last lecture

Hierarchy of structures of type "a set and a binary operation"

Example (1/4)

Example 1. Consider the set $\mathbb{Z}_{12} = \{0, 1, 2, \dots, 11\}$ with the addition mod 12.

- the set \mathbb{Z}_{12} is closed under this operation, i.e., it is a **groupoid** groupoid;
- the operation is associative, so it is a **semigroup** semigroup;
- the number 0 is the neutral element, so it is a **monoid**monoid;
- the inverse of $k \neq 0$ is 12 k and the inverse of 0 is 0, so it is a group group;
- the operation is commutative, thus we have an **Abelian group**.

Let $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ be the set of the residue classes modulo n.

The group $(\mathbb{Z}_n, +_{(\text{mod }n)})$ is the additive group modulo n; it is denoted by \mathbb{Z}_n^+ .

_ Example (2/4)

Question: Which other set M forms a group with the addition (mod 12)?

In order for the operation to be well defined, we must have $M \subset \mathbb{Z}_{12}$:

Question (refined): Which subset of \mathbb{Z}_{12} forms a group with the addition (mod 12)?

Answer: There are quite a lot of them. To find out how to discover them, let us ask this subquestion:

Sub-question: Which is the smallest subset of \mathbb{Z}_{12} that forms a group with addition (mod 12) and contains the number 2?

Example (3/4)

We are looking for a set $M \subset \mathbb{Z}_{12}$ such that $2 \in M$ and $(M, +_{(\text{mod } 12)})$ is a group:

- *M* must be closed under addition mod 12:
 - it must contain 2+2=4, 2+4=6, 4+6=10, ...
 - the set $\{0, 2, 4, 6, 8, 10\}$ is closed under this operation, so we have a groupoid;

• the operation remains associative, so it is a semigroup;

• 0 remains the neutral element, so it is a monoid;

• each element has its inverse in the set (the set is closed under inversion), so it is a group.

```
The wanted set is M = \{0, 2, 4, 6, 8, 10\}.
We say that M is a subgroup generated by the set \{2\}.
```

 $_$ Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for others elements of \mathbb{Z}_{12} :

Back to the original question: there exist 6 different sets $M \subseteq \mathbb{Z}_{12}$ such that $(M, +_{(\text{mod } 12)})$ is a group.

Subgroups

Definition and basic properties

Definition of subgroup

Definition 2. Let $G = (M, \circ)$ be a group.

A subgroup of the group G is a pair $H = (N, \circ)$ such that:

- $N \subseteq M$ and $N \neq \emptyset$,
- \bullet *H* is a group.
- Idea of substructures with the same properties as the original structure: compare for instance with a subspace of a linear (vector) space.
- Similarly, we can define subgroupoids, subsemigroups, submonoids,...
- A binary operation in the group $G = (M, \circ)$ is a function from $M \times M$ to M.

The operation in a subgroup $H = (N, \circ)$ is, to be precise, the restriction of this operation to the set $N \times N$.

Trivial proper groups

and sub-

In each group $G = (M, \circ)$, there always exist at least two subgroups (if M contains only one element the two coincide):

- the group containing only the neutral element: $(\{e\}, \circ)$, and
- the group itself $G = (M, \circ)$.

These two groups are the trivial subgroups.

Other subgroups are non-trivial or proper subgroups.

Question 3. If H is a subgroup of a group G, is the neutral element of H identical to the neutral element of G?

Theorem 4. Let H_1, H_2, \ldots, H_n , whith $n \ge 1$, be subgroups of a group $G = (M, \circ)$. Then

$$H' = \bigcap_{i=1,2,\dots,n} H_i$$

is also a subgroup of G.

Power of an element

Definition 5. Let $G = (M, \circ)$ be a group with neutral element e. We define for each element $a \in M$ and each positive $n \in \mathbb{N}$ the n-th power of the element a as

$$a^{0} = e$$

$$a^{n} = \underbrace{a \circ a \circ \cdots \circ a}_{\substack{n \text{ times} \\ n \text{ times}}}$$

$$a^{-n} = (a^{-1})^{n} = \underbrace{a^{-1} \circ a^{-1} \circ \cdots \circ a^{-1}}_{\substack{n \text{ times}}}$$

Note that $a \circ a \circ \cdots \circ a$ can by written without brackets thanks to associativity (for a non-associative operation the result would depend on the order...).

For all $n, m \in \mathbb{N}$ the following "natural" equalities are true:

- $\bullet \ a^{n+m} = a^n \circ a^m,$
- $\bullet \ a^{nm} = (a^n)^m.$

For the additive notation of a group G = (M, +), we define the *n*-th multiple of the element *a* and we denote it by $n \times a$ (resp. $-n \times a = n \times (-a)$).

Order of a subgroup

Order of (sub)group

Definition 6. The order of a (sub)group $G = (M, \circ)$, denoted |G|, is its number of elements. If M is an infinite set, the order is infinite.

According to the order we distinguish between finite and infinite groups.

Example 7. The group \mathbb{Z}_{12}^+ is of order 12. It has 6 subgroups:

- two trivial: {0} and {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
- and four proper: $\{0,6\}$, $\{0,4,8\}$, $\{0,3,6,9\}$, and $\{0,2,4,6,8,10\}$.

of order 1, 2, 3, 4, 6 and 12.

(Left) cosets of a subgroup

Let G be a group and H be one of its subgroups.

The (left) coset of H in G with respect to an element $g \in G$ is the set

```
gH = \{gh : h \in H\} (or g + H in additive notation)
```

Example 8. Let us consider the subgroup $H = \{0, 3, 6, 9\}$ of \mathbb{Z}_{12} . Find g + H for all $g \in \mathbb{Z}_{12}$.

The index of H in G, denoted [G:H], is the number of different cosets of H in G.

Lagrange's Theorem

Theorem 9. Let H be a subgroup of a finite group G. The order of H divides the order of G.

More precisely, $|G| = [G:H] \cdot |H|$.

This statement connects the abstract structure of a group with divisibility and also with the notion of prime numbers!

Consequence: A group with prime order has only trivial subgroups! To prove Lagrange's Theorem we need the following lemma.

Lemma 10. For all $a, b \in G$ one has |aH| = |bH|.

Question 11. Let G be a group of order n and $k \in \mathbb{N}$ be such that k|n. Is there any subgroup of G of order k?

Groups generated by a set

Group generated by a set (1/2)

Question: How to find the smallest subgroup of a group $G = (M, \circ)$ containing a given nonempty set $N \subset M$?

Definition 12. Let $G = (M, \circ)$ be a group and $N \subset M$ a nonempty set. The smallest subgroup of G containing N is the subgroup generated by N and is denoted by $\langle N \rangle$.

In particular, for a singleton $N = \{a\}$ we use the notation $\langle a \rangle = \langle \{a\} \rangle$.

Example 13. For the group \mathbb{Z}_{12}^+ , we have proven that $\langle 2 \rangle = (\{0,2,4,6,8,10\},+_{mod\ 12})$.

Definition 14. If for a set M it holds that $\langle M \rangle = G$, we say that M is a generating set of G.

 $\begin{array}{lll} {\rm Group} & {\rm generated} & {\rm by} & {\rm a set} \\ (2/2) & & \end{array}$

Example 15. The group \mathbb{Z}_{12}^+ is generated, for instance, by the sets $\{1\}$ and $\{5\}$, i.e.

$$\langle 1 \rangle = \langle 5 \rangle = \mathbb{Z}_{12}^+.$$

Theorem 16. Let $G = (M, \circ)$ be a group and $N \subset M$ a nonempty set. The following holds:

• the subgroup $\langle N \rangle$ equals the intersection of all subgroups containing N, i.e.

$$\langle N \rangle = \bigcap \{H \colon H \text{ is a subgroup of } G \text{ containing } N \}$$

• all elements in $\langle N \rangle$ can be obtained by means of "group span", i.e.,

$$\left\{ a_1^{k_1} \circ a_2^{k_2} \circ \cdots a_n^{k_n} : n \in \mathbb{N}, \ a_i \in \mathbb{N}, \ k_i \in \mathbb{Z} \right\}.$$

Cyclic groups

Examples

Groups generated by one element (1/2)

We have seen that the additive group \mathbb{Z}_{12}^+ is equal to $\langle 1 \rangle$, $\langle 5 \rangle$, $\langle 7 \rangle$, and $\langle 11 \rangle$.

The following theorem generalize this fact.

Theorem 17. An additive group modulo n is equal to $\langle k \rangle$ if and only if k and n are coprimes.

Proof. This statement is a consequence of a general theorem which will be proven later and of the fact that $\mathbb{Z}_n^+ = \langle 1 \rangle$ for all $n \geq 2$.

Groups generated by one element (2/2)

The group $(\{1,2,\ldots,p-1\},\cdot_{(\text{mod }p)})$, where p is a prime number, is the multiplicative group modulo p, denoted \mathbb{Z}_p^{\times} .

Example 18. Is there a one-element set generating the group \mathbb{Z}_{11}^{\times} ?

Yes, for example $\langle 2 \rangle = \mathbb{Z}_{11}^{\times}$.

On the other hand, $\langle 3 \rangle = (\{1,3,4,5,9\}, \cdot_{(mod\ 11)}).$

Finding the generator(s) of a multiplicative group \mathbb{Z}_p^{\times} is more complicated than for an additive group \mathbb{Z}_n^+ .

Multiplicative groups have more complicated and interesting structure.

Definition

Definition cyclic group

Definition 19. A group $G = (M, \circ)$ is cyclic if there exists an element $a \in M$ such that $\langle a \rangle = G$.

This element is a generator of the cyclic group.

- \mathbb{Z}_n^+ is a cyclic group for every n and its generators are all positive numbers $k \leq n$ coprime with n.
- The infinite group $(\mathbb{Z}, +)$ is cyclic and it has just two generators: 1 and -1.
- \mathbb{Z}_{11}^{\times} is cyclic, and 2 is a generator.

Why "cyclic"?

Consider the multiplicative group \mathbb{Z}_{13}^{\times} .

If we repeatedly compose the generator 2 with itself we successively get all elements of the group: $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 3$, ..., $2^{12} = 1$.

The 13-th power is again the number 2 and so the sequence of powers is indeed stuck in a cycle.

```
subgroups: {1, 3, 4, 9, 10, 12}, {1, 5, 8, 12}, {1, 3, 9}, {1, 12}. generators: 2, 6, 7, 11.
```


Fermat's Theorem

Fermat's Theorem (1/2)

Theorem 20. In a cyclic group $G = (M, \circ)$ of order n, for all elements $a \in M$, it holds that

$$a^n = e$$

Where e is the neutral element of G.

Proof. Consider a sequence of elements from $M: a, a^2, a^3, a^4, \dots$

Denote q the smallest number such that $a^q = e$. Clearly $q \leq n$ (why?!)

The set a, a^2, \dots, a^q is the subgroup $\langle a \rangle$ and has order q.

By Lagrange's Theorem, we have that q divides n, i.e,. there exists $k \in \mathbb{N}$ such that n = qk.

We have
$$a^n = a^{qk} = (a^q)^k = e^k = e$$
.

Fermat's Theorem (2/2)

 \mathbb{Z}_p^{\times} is always a cyclic group (it is not trivial to prove it) and its order is p-1.

Applying the previous theorem to \mathbb{Z}_p^{\times} we obtain the well-known Fermat's Little Theorem.

Corollary 21 (Fermat's Little Theorem). For an arbitrary prime number p and an arbitrary $1 \le a < p$ we have that

$$a^{p-1} \equiv 1 \, (mod \, p).$$

Find the generators

How to find all generators (1/2)

Generally, to find all generators is not an easy task (e.g., in groups \mathbb{Z}_p^{\times} we are not able to do it algorithmically); but if we have one, it is easy to find all the others.

Theorem 22. If (G, \circ) is a cyclic group of order n and a is one of its generator, then a^k is a generator if and only if k and n are coprime.

To prove the previous theorem we use the following

```
Lemma 23. Let D = \{mk + \ell n \mid m, \ell \in \mathbb{Z}\}.
Then gcd(k, n) = min\{|a| \mid a \in D \setminus \{0\}\}.
```

How to find all generators (2/2)

Corollary 24. In a cyclic group of order n, the number of all generators is equal to $\varphi(n)$.

Where φ is the Euler's (totient) function, which assigns to each integer n the number of integers less than n that are coprime with n

 \mathbb{Z}_p^{\times} is a cyclic group of order p-1 and thus it has $\varphi(p-1)$ generators.

An effective algorithm for evaluating $\varphi(n)$ does not exist; if it existed, we would be able to find the integer factorization of arbitrarily large n and RSA would not be safe!

$$(\bmod \ 13) \begin{pmatrix} 2^1 & 2^2 & 2^3 & 2^4 & 2^5 & 2^6 & 2^7 & 2^8 & 2^9 & 2^{10} & 2^{11} & 2^{12} \\ 2 & 4 & 8 & 3 & 6 & 12 & 11 & 9 & 5 & 10 & 7 & 1 \end{pmatrix}$$

$$(\bmod \ 13) \begin{pmatrix} 2^1 & 2^2 & 2^3 & 2^4 & 2^5 & 2^6 & 2^7 & 2^8 & 2^9 & 2^{10} & 2^{11} & 2^{12} \\ 2 & 4 & 8 & 3 & 6 & 12 & 11 & 9 & 5 & 10 & 7 & 1 \end{pmatrix}$$

$$(\bmod \ 13) \begin{pmatrix} 2^1 & 2^2 & 2^3 & 2^4 & 2^5 & 2^6 & 2^7 & 2^8 & 2^9 & 2^{10} & 2^{11} & 2^{12} \\ 2 & 4 & 8 & 3 & 6 & 12 & 11 & 9 & 5 & 10 & 7 & 1 \end{pmatrix}$$

12 11 9

Subgroups of cyclic groups

Theorem 25. Any subgroup of a cyclic group is again a cyclic group.

Subgroups of cyclic group are cyclic

```
Consider again the multiplicative group \mathbb{Z}_{13}^{\times}. subgroups: \{1,3,4,9,10,12\}, \{1,5,8,12\}, \{1,3,9\}, \{1,12\}. generators: 2, 6, 7, 11.
```

Order of an element

Order of an element

$$\pmod{13} (\pmod{13}) (\binom{2^1}{2} \times \times \times \times 2^5 \times 2^7 \times \times \times \times 2^{11} \times 2$$

$$2 \times \times \times 6 \times 11 \times \times \times 7 \times$$

Let G be a group and $g \in G$.

The order of g (in G) is the order of the group that is generated by g.

In the finite case, we have the equivalence $\operatorname{order}(g) = \#\langle g \rangle$.

Example 26. Find the order of all elements in \mathbb{Z}_5^{\times} and in \mathbb{Z}_7^{\times} .