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Numerical mathematics

Introduction

Numerical
mathematics

Numerical mathematics is devoted to methods that seek an approximate
but sufficiently accurate solution of problems in various fields. A simplified
mathematical model of the problem is used; its partial tasks consist of
various mathematical problems.

The following mathematical problems are often involved:

1. solution of systems of linear equations,

2. solution of differential equations,

3. calculation of integrals,

4. evaluations of function values,

5. estimation of errors in calculations,

6. . . .

Typically, a computer calculation is involved.
From the his-
tory

• Error in the Patriot missile defense system (February 25th, 1991)

(0.1)10 = (0.000110011001100110011001100110011...)2

• Explosion of the Ariane 5 rocket (June 4th, 1996)
conversion from a 64-bit floating point number to a 16-bit signed in-
teger

• . . .

This does not mean that approximation methods do not work. In the vast
majority of cases they work well, but it is important to know how reliable they
are.
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Origin of errors

Category of er-
rors

We will use different approximations to design the algorithm. We will there-
fore make various kind of mistakes, which can be divided according to their
origin:

1. errors in the model: the mathematical model to solve the problem is
somehow simplified.

2. errors in the data: data often come from measurements that do not
have absolute accuracy.

3. errors in the algorithm: we don’t have to have an algorithm that finds
the exact solution in a finite number of steps.

4. rounding errors: errors occur during the calculation itself (e.g., during
arithmetic operations).

Apart from data errors, we will give examples of all other kinds of errors.
We start with rounding errors, which are given by the fact that the algorithm
need a computer to do the hard work.
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Computer arithmetics

Representation with floating point

Representation
with floating
pointTo store a number in computer we usually use the binary number system.

(6)10 = (110)2 (0.1)10 = (0.000110011001100110011001100110011...)2

For non-integers, one can use the scientific notation. In the binary base
a number x is represented as

x = ±m · 2e.

m - mantissa/significand having a fixed number of digits / fixed length;
these digits are also called significant digits.

e - exponent having a fixed number of digits / fixed length.
IEEE-754

A number x is represented by its sign s and by the numbers e and m.
The standard IEEE-754 defines the following lengths of e and m and their

interpretation.

precision length of m d = length of e b

binary32 / single precision 23 8 127
binary64 / double precision 52 11 1023
binary128 / quadruple precision 112 15 16383

• if e = 2d − 1 and m 6= 0, then x = NaN (Not a Number)

• if e = 2d − 1 and m = 0 and s = 0, then x = +Inf

• if e = 2d − 1 and m = 0 and s = 1, then x = −Inf

• if 0 < e < 2d − 1, then x = (−1)s · (1.m)2 · 2e−b (so-called normalized
numbers)

• if e = 0 and m 6= 0, then x = (−1)s · (0.m)2 · 2−b+1 (so-called subnor-
mal/unnormalized numbers)
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• if e = 0 and m = 0 and s = 0, then x = 0

• if e = 0 and m = 0 and s = 1, then x = −0

Machine
numbers (1/3)

The numbers that can be represented as floating point numbers (with
selected finite lengths of m and e) are called machine numbers.

Example: take m of length 2 bits, e of length 3 bits, and b = 3.

We obtain the following set of numbers (we consider only positive elements)
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Subnormal numbers are in brown.
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The set of all machine numbers with a given precision has little in common
with the set of real numbers. It resembles more to a finite subset of integers.

Machine
numbers (2/3)

Denote the set of machine numbers by F .

The set F has the largest and the smallest positive elements as follows:

precision max. no. min. pos. normalized min. pos. subnormal

single (2− 2−23) · 2127

≈ 3.4 · 1038
2−126

≈ 1.2 · 10−38
2−126−23 = 2−149

≈ 1.4 · 10−45

double (2− 2−52) · 21023

≈ 1.8 · 10308
2−1022

≈ 2.2 · 10−308
2−1022−52 = 2−1074

≈ 4.9 · 10324

Machine
numbers (3/3)

F is characterized by the machine epsilon εF , which is the difference
between 1.0 and the smallest number in F larger than 1.
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For single precision we have εF = 2−23, for double 2−52.

Proposition 1. The distance between any two neighboring normalized num-
bers in F is at least εF

2 and at most εF .

Representation
of real numbers
(1/3)Let fl : R → F be the mapping which assigns to any x ∈ R the closest

machine number.

The “closest” is given by the method chosen: rounding (“ties to even”),
chopping (rounding towards 0),. . .

When trying to represent a number which is out of the representable range,
an overflow or underflow is returned.

Definition 2. Let a number α be an approximate value of a number a.

• The absolute error is the value |α− a|.

• For a 6= 0, the relative error is |α− a|
|a|

.

Representation
of real numbers
(2/3)In single precision, suppose that a number x ∈ R lies in the normalized

range, i.e.,

x = q · 2`, where 1 ≤ q < 2 and − 126 ≤ ` ≤ 127.

What is the error due to the rounding or chopping when the closest ma-
chine number is chosen?

Let’s round towards 0, i.e., chop off bits which do not fit into the significand
(for positive numbers).

If x = (1.b1b2 · · · b22b23b24 · · · )2 · 2` then fl(x) = (1.b1b2 · · · b23) · 2`.
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The absolute error and the absolute errors are respectively:

|x− fl(x)| ≤ 2−23+` and |x− fl(x)|
|x|

≤ 2−23+`

q · 2`
≤ 2−23.

Representation
of real numbers
(3/3)The threshold of relative error is called the unit roundoff error and is

denoted by u. Thus, in the single precision with chopping we have u = 2−23.

Attention, this number is sometimes called machine epsilon.

If we use mathematical rounding, we obtain u = 2−24.

Proposition 3. Let x ∈ R be greater than the smallest normalized number of
F and smaller than the greatest normalized number of F . We have

fl(x) = x(1 + δ), where |δ| ≤ u,

Arithmetic operations

Arithmetic op-
erations - error

Proposition 4. Let x, y ∈ F and � be the operation of addition, multiplica-
tion or division. If there is no overflow or underflow, then we have

fl(x� y) = (x� y)(1 + δ), where |δ| ≤ u,

In general: If we operate with more numbers, it is better to start with the
smallest ones.

Arithmetic
operations - a
demonstration

Let f : R2 7→ R be a mapping given by

f(x, y) = 333.75y6 + x2
(
11x2y2 − y6 − 121y4 − 2

)
+ 5.5y8 + x

2y .

Let us evaluate f(77617, 33096):
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SageMath (precision 23 bits) 1.17260
SageMath (precision 24 bits) −6.33825 · 10−29

SageMath (precision 53 bits) −1.18059162071741 · 1021

SageMath (precision 54 bits) 1.18059162071741 · 1021

SageMath (precision 100 bits) 1.1726039400531786318588349045
SageMath (precision 121 bits) 1.17260394005317863185883490452018371
SageMath (precision 122 bits) −0.827396059946821368141165095479816292

The exact solution is −54767
66192 ≈ −0.827396.

[S. M. Rump: Algorithms for verified inclusions - theory and practice, ...,
1988]

Loss of signifi-
cant digits (1/3)

Errors while doing arithmetical operations can accumulate.

Big problems can be caused by the so-called cancellation.

Let us illustrate this on an example. Imagine that our computer calculates
in basis 10 and uses 10 significant digits.

We want to evaluate x− sin(x) for x = 1
15.

x← 6.6666 66667 ·10−2

sin(x)← 6.6617 29492 ·10−2

x− sin(x)← 0.0049 37175 ·10−2

x− sin(x)← 4.9371 75000 ·10−5

The last 3 zeros are not correct significant digits.

Let us calculate the relative error.
Loss of signifi-
cant digits (2/3)

∣∣∣( 1
15 − sin

(
1
15

))
− fl

(
fl

(
1
15

)
− sin

(
fl

(
1
15

)) )∣∣∣∣∣∣ 1
15 − sin

(
1
15

)∣∣∣ ≈ 1.4 · 10−7.
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That is a lot in comparison to

|x− fl(x)|
|x|

≤ 5 · 10−10.

Proposition 5. Let x and y be normalized machine numbers and x > y > 0.
If 2−p ≤ 1− y

x
≤ 2−q for some positive integers p and q, then at most p

and at least q significant binary bits are lost when performing the operation
x− y.

Loss of signifi-
cant digits (3/3)

Cancellation can be avoided by using the following techniques:

• rationalizing the problem, i.e., using rational numbers and avoiding the
subtraction in floating points arithmetics,

• using series expansions (such as Taylor series),

• using other identities,. . .

Errors - conclusion

Errors - conclu-
sion

Origins of errors:

• rounding errors and their accumulation,

• cancellation.

The errors on the inputs may also play an important role. Those errors are
given by the origin of the input which may be the output of another calculation
or a measurement.

A few final notes:

• increased precision may not lead to a more precise result,

• cancellation can be useful - it may cancel rounding errors,

• few operations with small numbers do not imply a small error.
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Errors – alterna-
tives

One of the problems of machine numbers (IEEE-754) is in the ignorance
of the created error.

There are some alternatives:

• Exact arithmetics: Z, Q or GF (p) (it is not always possible or suitable).

• Interval arithmetics (we work with intervals instead of points). (IEEE
1788–2015).

• Unum.

https://en.wikipedia.org/wiki/Interval_arithmetic
https://en.wikipedia.org/wiki/Unum_(number_format)

