BIE-PST - Probability and Statistics

Lecture 10: Interval estimation of parameters

Winter semester 2023/2024

Lecturer:

Francesco Dolce

Department of Applied Mathematics Faculty of Information Technology Czech Technical University in Prague
© 2011-2023 Rudolf B. Blažek, Francesco Dolce, Roman Kotecký, Jitka Hrabáková, Petr Novák, Daniel Vašata

Table of contents

1 Interval estimation 2
1.1 Confidence intervals 2
1.2 Confidence intervals for the expectation 3
1.2.1 Known variance 3
1.2.2 Unknown variance 5
1.3 Confidence intervals for the variance 9

1 Interval estimation

1.1 Confidence intervals

Instead of a point estimator of a parameter θ we can be interested in an interval, in which the true value of the parameter lies with a certain large probability $1-\alpha$:

Definition 1.1. Let X_{1}, \ldots, X_{n} be a random sample from a distribution with a parameter θ. The interval (L, U) with boundaries given by statistics $L \equiv L(\mathbf{X}) \equiv L\left(X_{1}, \ldots, X_{n}\right)$ and $U \equiv U(\mathbf{X}) \equiv U\left(X_{1}, \ldots, X_{n}\right)$ fulfilling

$$
\mathrm{P}(L<\theta<U)=1-\alpha
$$

is called the $100 \cdot(1-\alpha) \%$ confidence interval for θ.
Statistics L and U are called the lower and upper bound of the confidence interval.
The number $(1-\alpha)$ is called confidence level.

- It holds that

$$
\mathrm{P}(\theta \in(L, U))=1-\alpha .
$$

- Which means that

$$
\mathrm{P}(\theta \notin(L, U))=\alpha
$$

- For a symmetric or two-sided interval we choose L and U such that

$$
\mathrm{P}(\theta<L)=\frac{\alpha}{2} \quad \text { and } \quad \mathrm{P}(U<\theta)=\frac{\alpha}{2}
$$

- The most common values are $\alpha=0.05$ and $\alpha=0.01$, i.e., the ones that gives a 95% confidence interval or a 99% confidence interval.

If we are interested only in a lower or upper bound, we construct statistics L or U such that

$$
\mathrm{P}(L<\theta)=1-\alpha \quad \text { or } \quad \mathrm{P}(\theta<U)=1-\alpha
$$

This means that

$$
\mathrm{P}(\theta<L)=\alpha \quad \text { or } \quad \mathrm{P}(U<\theta)=\alpha
$$

and intervals $(L,+\infty)$ or $(-\infty, U)$ are called the upper or lower confidence intervals, respectively.

In this case we speak about one-sided confidence intervals.
There are several possible ways how to construct confidence intervals, depending on the underlying distribution and meaning of estimated parameters. We will use the following approach:

- Find a statistics $H(\theta)$, which:
- depends on the random sample X_{1}, \ldots, X_{n},
- depends on the estimated parameter θ,
- has a known distribution.
- Find such bounds h_{L} and h_{U}, for which

$$
\mathrm{P}\left(h_{L}<H(\theta)<h_{U}\right)=1-\alpha
$$

- Rearrange the inequalities to separate θ and obtain

$$
\mathrm{P}(L<\theta<U)=1-\alpha
$$

The statistics $H(\theta)$ is often chosen using the distribution of a point estimate of the parameter θ, i.e., sample mean for the expectation or sample variance for the theoretical variance.

1.2 Confidence intervals for the expectation

1.2.1 Known variance

Theorem 1.2. Suppose we have a random sample X_{1}, \ldots, X_{n} from the normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$ and suppose that we know the value of σ^{2}. The two-sided symmetric $100 \cdot(1-\alpha) \%$ confidence interval for μ is

$$
\left(\bar{X}_{n}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}_{n}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

where $z_{\alpha / 2}=\Phi^{-1}(1-\alpha / 2)$ is the critical value of the standard normal distribution, i.e., such a number for which it holds that $\mathrm{P}\left(Z>z_{\alpha / 2}\right)=\alpha / 2$ for $Z \sim \mathrm{~N}(0,1)$.

The One-sided $100 \cdot(1-\alpha) \%$ confidence intervals for μ are then

$$
\left(\bar{X}_{n}-z_{\alpha} \frac{\sigma}{\sqrt{n}},+\infty\right) \quad \text { and } \quad\left(-\infty, \bar{X}_{n}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)
$$

using the same notation.
Proof. First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution, too, but with different parameters. The proof is obtained using the moment generating function $M_{X}(s)=\mathrm{E}\left[e^{s X}\right]$.

The moment generating function of the normal distribution with parameters μ and σ^{2} is:

$$
\begin{aligned}
M_{X}(s) & =\mathrm{E}\left[e^{s X}\right]=\int_{-\infty}^{+\infty} e^{s x} \cdot \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} x=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}-2 x \mu+\mu^{2}-2 \sigma^{2} s x}{2 \sigma^{2}}} \mathrm{~d} x \\
& =\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x-\left(\mu+\sigma^{2} s\right)\right)^{2}+m u^{2}-\left(\mu+\sigma^{2} s\right)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \\
& =e^{\mu s-\frac{\sigma^{2} s^{2}}{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x-\left(\mu+\sigma^{2} s\right)\right)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \underbrace{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x-\left(\mu+\sigma^{2} s\right)\right)^{2}}{2 \sigma^{2}}} \mathrm{~d} x=e^{\mu s-\frac{\sigma^{2} s^{2}}{2}}}_{1} .
\end{aligned}
$$

The moment generating function of a sum of independent random variables is the product of their generating functions.

The moment generating function of a sum of i.i.d. normal variables is:

$$
\begin{aligned}
M_{\text {sum }}(s) & =\mathrm{E}\left[e^{s \sum_{i=1}^{n} X_{i}}\right]=\mathrm{E}\left[e^{s X_{1}} \cdots e^{s X_{n}}\right] \stackrel{\text { independence }}{=} \mathrm{E}\left[e^{s X_{1}}\right] \cdots \mathrm{E}\left[e^{s X_{n}}\right] \\
& =\prod_{i=1}^{n} M_{i}(s) \stackrel{\text { identical distribution }}{=}(M(s))^{n} \\
& =\left(e^{\mu s-\frac{\sigma^{2} s^{2}}{2}}\right)^{n}=e^{n \mu s-\frac{n \sigma^{2} s^{2}}{2}}
\end{aligned}
$$

Comparing with the moment generating function of one normal variable we see that the generating function of the sum corresponds with the normal distribution $\mathrm{N}\left(n \mu, n \sigma^{2}\right)$. Thus $\sum_{i=1}^{n} X_{i} \sim \mathrm{~N}\left(n \mu, n \sigma^{2}\right)$ and therefore $\bar{X}_{n} \sim \mathrm{~N}\left(\mu, \frac{n \sigma^{2}}{n^{2}}\right)=\mathrm{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$.

Thus after standardization we have

$$
Z=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)
$$

From the definition of the critical value $z_{\alpha / 2}: \mathrm{P}\left(Z>z_{\alpha / 2}\right)=\alpha / 2$ it follows that $\mathrm{P}(Z<$ $\left.z_{\alpha / 2}\right)=1-\mathrm{P}\left(Z>z_{\alpha / 2}\right)=1-\alpha / 2$. It means that

$$
\mathrm{P}\left(z_{1-\alpha / 2}<Z<z_{\alpha / 2}\right)=\mathrm{P}\left(Z<z_{\alpha / 2}\right)-\mathrm{P}\left(Z<z_{1-\alpha / 2}\right)=1-\alpha / 2-(1-1+\alpha / 2)=1-\alpha
$$

From the symmetry of $\mathrm{N}(0,1)$ it follows that $z_{1-\alpha / 2}=-z_{\alpha / 2}$. And we have

$$
\begin{aligned}
1-\alpha & =\mathrm{P}\left(z_{1-\alpha / 2}<Z<z_{\alpha / 2}\right)=\mathrm{P}\left(-z_{\alpha / 2}<\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}<z_{\alpha / 2}\right) \\
& =\mathrm{P}\left(-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\bar{X}_{n}-\mu<z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)=\mathrm{P}\left(z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}>\mu-\bar{X}_{n}>-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) \\
& =\mathrm{P}\left(-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu-\bar{X}_{n}<z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)=\mathrm{P}\left(\bar{X}_{n}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}_{n}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) .
\end{aligned}
$$

To obtain the confidence interval for the expectation, we used the fact that for $X_{i} \sim$ $\mathrm{N}\left(\mu, \sigma^{2}\right)$ the sample mean has the normal distribution:

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)
$$

The central limit theorem tells us that for any random sample with expectation μ and finite variance σ^{2}, the sample mean converges to the normal distribution with increasing sample size:

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \xrightarrow{n \rightarrow \infty} \mathrm{~N}(0,1) .
$$

This fact can be utilized to form confidence intervals also for other than normal distributions.
As a consequence of the central limit theorem, for large n we can use the same confidence intervals even for a random sample from any distribution with a finite variance:

Suppose we have a random sample X_{1}, \ldots, X_{n} from a distribution with $\mathrm{E} X_{i}=\mu$ and var $X_{i}=\sigma^{2}$, and suppose that we know the variance σ^{2}.

For n large enough, the two-sided $100 \cdot(1-\alpha) \%$ confidence interval for μ can be taken as

$$
\left(\bar{X}_{n}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}_{n}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

where $z_{\alpha / 2}$ is the critical value of $\mathrm{N}(0,1)$. The one-sided confidence intervals are constructed analogously.

- The approximate confidence level of such intervals $\mathrm{P}(\mu \in(\cdots))$ is then $1-\alpha$.
- Large enough usually means $n=30$ or $n=50$. For some distributions which are further away from the normal distribution (e.g., not unimodal, skewed), n must be even larger.

1.2.2 Unknown variance

Most often in practice we do not know the variance σ^{2}, but only have the observed data at our disposal.

As seen last time, the variance can be estimated using the sample variance

$$
s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

We will now show how to utilize the sample variance and adjust the intervals so that the confidence level would be exactly $1-\alpha$.

Chi-square and Student's t-distribution

We use the following new distributions:
Definition 1.3. Suppose we have a random sample Y_{1}, \ldots, Y_{n} from the normal distribution $\mathrm{N}(0,1)$. Then we say that the random variable

$$
Y=\sum_{i=1}^{n} Y_{i}^{2}
$$

has the chi-square $\left(\chi^{2}\right)$ distribution with n degrees of freedom.

Definition 1.4. Suppose we have a random sample Y_{1}, \ldots, Y_{n} from $\mathrm{N}(0,1), Y=\sum_{i=1}^{n} Y_{i}^{2}$ and an independent variable Z also from $\mathrm{N}(0,1)$. Then we say that the random variable

$$
T=\frac{Z}{\sqrt{Y / n}}
$$

has the Student's t-distribution with n degrees of freedom.
The critical values for both distributions can be found in tables.
We estimate the unknown variance σ^{2} using the sample variance

$$
s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

The distribution of the sample variance is connected with the chi-square distribution:
Theorem 1.5. Suppose we have a random sample X_{1}, \ldots, X_{n} from the normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Then

$$
\frac{(n-1) s_{n}^{2}}{\sigma^{2}}
$$

has the chi-square distribution with $n-1$ degrees of freedom.
Proof. See literature.
The distribution of the sample mean with σ replaced by $s_{n}=\sqrt{s_{n}^{2}}$ is connected with the t-distribution:

Theorem 1.6. Suppose we have a random sample X_{1}, \ldots, X_{n} from the normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Then

$$
T=\frac{\bar{X}_{n}-\mu}{s_{n} / \sqrt{n}}
$$

has the Student's t -distribution with $n-1$ degrees of freedom.
Proof. We can rewrite T as:

$$
T=\frac{\bar{X}_{n}-\mu}{\sqrt{s_{n}^{2} / n}}=\frac{\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) s_{n}^{2}}{\sigma^{2}(n-1)}}}
$$

The numerator has standard normal distribution $\mathrm{N}(0,1)$, under the square root in the denominator we have χ_{n-1}^{2} divided by $(n-1)$. The distributions of \bar{X}_{n} and s_{n}^{2} are independent (see literature), thus the whole fraction has indeed the t_{n-1} distribution.

Confidence intervals for the expectation

If the variance σ^{2} is unknown we estimate the σ by taking the square root of the sample variance $s_{n}=\sqrt{s_{n}^{2}}$. Standardization of \bar{X}_{n} with s_{n} leads to the Student's t-distribution:

Theorem 1.7. Suppose we have a random sample X_{1}, \ldots, X_{n} from the normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$ with unknown variance. The two-sided symmetric $100 \cdot(1-\alpha) \%$ confidence interval for μ is

$$
\left(\bar{X}_{n}-t_{\alpha / 2, n-1} \frac{s_{n}}{\sqrt{n}}, \bar{X}_{n}+t_{\alpha / 2, n-1} \frac{s_{n}}{\sqrt{n}}\right),
$$

where $t_{\alpha / 2, n-1}$ is the critical value of the Student's t-distribution with $n-1$ degrees of freedom. The one-sided $100 \cdot(1-\alpha) \%$ confidence intervals for μ are

$$
\left(\bar{X}_{n}-t_{\alpha, n-1} \frac{s_{n}}{\sqrt{n}},+\infty\right) \quad \text { and } \quad\left(-\infty, \bar{X}_{n}+t_{\alpha, n-1} \frac{s_{n}}{\sqrt{n}}\right)
$$

using the same notation.
As a consequence of the central limit theorem, for large n we can use the same confidence interval even for a random sample from any distribution.

Suppose we observe a random sample X_{1}, \ldots, X_{n} from any distribution with $\mathrm{E} X_{i}=\mu$ and $\operatorname{var} X_{i}=\sigma^{2}$ and suppose that we do not know the variance σ^{2}.

For n large enough, the two-sided symmetric $100 \cdot(1-\alpha) \%$ confidence interval for μ can be taken as

$$
\left(\bar{X}_{n}-t_{\alpha / 2, n-1} \frac{s_{n}}{\sqrt{n}}, \bar{X}_{n}+t_{\alpha / 2, n-1} \frac{s_{n}}{\sqrt{n}}\right)
$$

where $t_{\alpha / 2}$ is the critical value of the Student's t-distribution with $n-1$ degrees of freedom t_{n-1}. The one-sided confidence intervals are constructed analogously.

- For the interval it holds that $\mathrm{P}(\mu \in(\cdots)) \approx 1-\alpha$.
- Large enough usually means $n=30$ or $n=50$. For distributions which are further away from the normal distribution (e.g., not unimodal, skewed), n must be even larger.

Comparison of the critical values of $\mathrm{N}(0,1)$ and t_{n-1} :

- Confidence intervals for μ for unknown variance σ^{2} are wider than for σ^{2} known.
- For $n \rightarrow+\infty$ both distributions (and thus also their critical values) coincide.

Example 1.8 (- fishes' weights). Suppose that the carps' weights in a certain pond in south Bohemia are random with normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$. From 10 previously caught carps we know that:

$$
\sum_{i=1}^{10} X_{i}=45.65 \mathrm{~kg} \quad \text { and } \quad \sum_{i=1}^{10} X_{i}^{2}=208.70 \mathrm{~kg}^{2}
$$

Find point estimates and two-sided 90% confidence interval estimates for μ and σ^{2}. Point estimates:

- $\bar{X}_{10}=\frac{1}{10} \sum_{i=1}^{10} X_{i}=\frac{45.65}{10}=4.565 \mathrm{~kg}$.
- $s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} X_{i}^{2}-n\left(\bar{X}_{n}\right)^{2}\right)$.
- $s_{10}^{2}=\frac{208.7-10 \cdot(4.565)^{2}}{9}=0.0342 \mathrm{~kg}^{2}$.

Find the two-sided 90% confidence interval for μ :

$$
\left(\bar{X}_{n}-t_{\alpha / 2, n-1} \frac{s_{n}}{\sqrt{n}}, \bar{X}_{n}+t_{\alpha / 2, n-1} \frac{s_{n}}{\sqrt{n}}\right)
$$

$$
\left(4.565-1.833 \frac{\sqrt{0.0342}}{\sqrt{10}}, 4.565+1.833 \frac{\sqrt{0.0342}}{\sqrt{10}}\right)
$$

$$
\begin{gathered}
\bar{X}_{10}=4.565 \mathrm{~kg} \\
s_{10}^{2}=0.0342 \mathrm{~kg}^{2} \\
\alpha=10 \%=0.1 \\
t_{0.05,9}=1.833
\end{gathered}
$$

Two-sided 90% confidence interval for μ is

$$
(4.4578,4.6722) \mathrm{kg} .
$$

Find the lower 90% confidence interval for μ :

$$
\left(-\infty, 4.565+1.383 \frac{\sqrt{0.0342}}{\sqrt{10}}\right)
$$

$$
\left(-\infty, \bar{X}_{n}+t_{\alpha, n-1} \frac{s_{n}}{\sqrt{n}}\right)
$$

$$
\begin{array}{ll}
\bar{X}_{10}=4.565 \mathrm{~kg} & t_{0.1,9}=1.383 \\
s_{10}^{2}=0.0342 \mathrm{~kg}^{2} & \\
\alpha=10 \%=0.1 &
\end{array}
$$

The lower 90% confidence interval for μ is then

$$
(-\infty, 4.646) \mathrm{kg} .
$$

If the fish seller would tell us that the expected weight is 4.8 kg , we can say with 90% certainty that it is not true.

Such considerations form the basis of hypothesis testing, see later.

1.3 Confidence intervals for the variance

Theorem 1.9. Suppose we observe a random sample X_{1}, \ldots, X_{n} from the normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$. The two-sided $100 \cdot(1-\alpha) \%$ confidence interval for σ^{2} is

$$
\left(\frac{(n-1) s_{n}^{2}}{\chi_{\alpha / 2, n-1}^{2}}, \frac{(n-1) s_{n}^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right)
$$

where $\chi_{\alpha / 2, n-1}^{2}$ is the critical value of the χ^{2} distribution with $n-1$ degrees of freedom, i.e., $\mathrm{P}\left(X>\chi_{\alpha / 2, n-1}^{2}\right)=\alpha / 2$ if $X \sim \chi_{n-1}^{2}$.

The one-sided $100 \cdot(1-\alpha) \%$ confidence intervals for σ^{2} are then

$$
\left(\frac{(n-1) s_{n}^{2}}{\chi_{\alpha, n-1}^{2}},+\infty\right) \quad \text { and } \quad\left(0, \frac{(n-1) s_{n}^{2}}{\chi_{1-\alpha, n-1}^{2}}\right)
$$

\checkmark The statement holds only for the normal distribution!

Proof. We know that

$$
\frac{(n-1) s_{n}^{2}}{\sigma^{2}}
$$

has the chi-square distribution χ_{n-1}^{2}. Then the confidence interval can be established using the critical values:

$$
\mathrm{P}\left(\chi_{1-\alpha / 2, n-1}^{2}<\frac{(n-1) s_{n}^{2}}{\sigma^{2}}<\chi_{\alpha / 2, n-1}^{2}\right)=1-\alpha
$$

By multiplying all parts by σ^{2} and dividing with the critical values we get that indeed:

$$
\mathrm{P}\left(\frac{(n-1) s_{n}^{2}}{\chi_{\alpha / 2, n-1}^{2}}<\sigma^{2}<\frac{(n-1) s_{n}^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right)=1-\alpha
$$

Example 1.10 (- fishes' weights - continuation). Find the two-sided 90% confidence interval for the variance σ^{2} of the carps' weights:

$$
\left(\frac{(n-1) s_{n}^{2}}{\chi_{\alpha / 2, n-1}^{2}}, \frac{(n-1) s_{n}^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right)
$$

$$
\left(\frac{9 \cdot 0.0342}{16.919}, \frac{9 \cdot 0.0342}{3.325}\right)
$$

$$
\begin{gathered}
s_{10}^{2}=0.0342 \mathrm{~kg}^{2} \\
\alpha=10 \%=0.1 \\
\chi_{0.05,9}^{2}=16.919 \\
\chi_{0.95,9}^{2}=3.325
\end{gathered}
$$

The two-sided 90% confidence interval for σ^{2} is

$$
(0.0182,0.0926) \mathrm{kg}^{2} .
$$

Find the upper one-sided 90% confidence interval for the variance σ^{2} of the carps' weights:

$$
\begin{array}{ll}
\left(\frac{(n-1) s_{n}^{2}}{\chi_{\alpha, n-1}^{2}},+\infty\right) & s_{10}^{2}=0.0342 \mathrm{~kg}^{2} \\
\left(\frac{9 \cdot 0.0342}{14.684},+\infty\right) & \alpha=10 \%=0.1 \\
& \chi_{0.1,9}^{2}=14.684
\end{array}
$$

The upper one-sided 90% confidence interval for σ^{2} is then

$$
(0.0210,+\infty) \mathrm{kg}^{2}
$$

If the fish seller would tell us that the variance of the weights is $0.01 \mathrm{~kg}^{2}$, meaning that the standard deviation is 100 grams, we could say with 90% certainty that it is not true.

