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1 Interval estimation

1.1 Confidence intervals

Instead of a point estimator of a parameter θ we can be interested in an interval, in which
the true value of the parameter lies with a certain large probability 1− α:

Definition 1.1. Let X1, . . . , Xn be a random sample from a distribution with a parameter
θ. The interval (L,U) with boundaries given by statistics L ≡ L(X) ≡ L(X1, . . . , Xn) and
U ≡ U(X) ≡ U(X1, . . . , Xn) fulfilling

P
(
L < θ < U

)
= 1− α

is called the 100 · (1− α)% confidence interval for θ.

Statistics L and U are called the lower and upper bound of the confidence interval.

The number (1− α) is called confidence level.

• It holds that
P
(
θ ∈ (L,U)

)
= 1− α.

• Which means that
P
(
θ /∈ (L,U)

)
= α.

• For a symmetric or two-sided interval we choose L and U such that

P(θ < L) = α

2 and P(U < θ) = α

2 .

• The most common values are α = 0.05 and α = 0.01, i.e., the ones that gives a 95%
confidence interval or a 99% confidence interval.

If we are interested only in a lower or upper bound, we construct statistics L or U such
that

P
(
L < θ

)
= 1− α or P

(
θ < U

)
= 1− α.

This means that
P
(
θ < L

)
= α or P

(
U < θ

)
= α,

and intervals (L,+∞) or (−∞, U) are called the upper or lower confidence intervals, respecti-
vely.

In this case we speak about one-sided confidence intervals.
There are several possible ways how to construct confidence intervals, depending on the

underlying distribution and meaning of estimated parameters. We will use the following ap-
proach:

• Find a statistics H(θ), which:

– depends on the random sample X1, . . . , Xn,
– depends on the estimated parameter θ,
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BIE-PST, WS 2023/24, Lecture 10 1.2 Confidence intervals for the expectation

– has a known distribution.

• Find such bounds hL and hU , for which

P
(
hL < H(θ) < hU

)
= 1− α.

• Rearrange the inequalities to separate θ and obtain

P
(
L < θ < U

)
= 1− α.

The statistics H(θ) is often chosen using the distribution of a point estimate of the para-
meter θ, i.e., sample mean for the expectation or sample variance for the theoretical variance.

1.2 Confidence intervals for the expectation

1.2.1 Known variance

Theorem 1.2. Suppose we have a random sample X1, . . . , Xn from the normal distribution
N(µ, σ2) and suppose that we know the value of σ2. The two-sided symmetric 100 · (1− α)%
confidence interval for µ is (

X̄n − zα/2
σ√
n
, X̄n + zα/2

σ√
n

)
,

where zα/2 = Φ−1(1−α/2) is the critical value of the standard normal distribution, i.e., such
a number for which it holds that P(Z > zα/2) = α/2 for Z ∼ N(0, 1).

The One-sided 100 · (1− α)% confidence intervals for µ are then(
X̄n − zα

σ√
n
, +∞

)
and

(
−∞ , X̄n + zα

σ√
n

)
,

using the same notation.

Proof. First we show that the sample mean of i.i.d. random variables with a normal distri-
bution has a normal distribution, too, but with different parameters. The proof is obtained
using the moment generating function MX(s) = E[esX ].

The moment generating function of the normal distribution with parameters µ and σ2 is:

MX(s) = E[esX ] =
+∞∫
−∞

esx · 1√
2πσ2

e−
(x−µ)2

2σ2 dx =
+∞∫
−∞

1√
2πσ2

e−
x2−2xµ+µ2−2σ2sx

2σ2 dx

=
+∞∫
−∞

1√
2πσ2

e−
(x−(µ+σ2s))2

+mu2−(µ+σ2s)2

2σ2 dx

= eµs−
σ2s2

2

+∞∫
−∞

1√
2πσ

e−
(x−(µ+σ2s))2

2σ2 dx
+∞∫
−∞

1√
2πσ2

e−
(x−(µ+σ2s))2

2σ2 dx

︸ ︷︷ ︸
1

= eµs−
σ2s2

2 .
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The moment generating function of a sum of independent random variables is the product of
their generating functions.

The moment generating function of a sum of i.i.d. normal variables is:

Msum(s) = E[es
∑n

i=1 Xi ] = E[esX1 · · · · · esXn ] independence= E[esX1 ] · · · · · E[esXn ]

=
n∏
i=1

Mi(s)
identical distribution= (M(s))n

=
(
eµs−

σ2s2
2

)n
= enµs−

nσ2s2
2 .

Comparing with the moment generating function of one normal variable we see that the
generating function of the sum corresponds with the normal distribution N(nµ, nσ2). Thus
n∑
i=1

Xi ∼ N(nµ, nσ2) and therefore X̄n ∼ N
(
µ,
nσ2

n2

)
= N

(
µ,
σ2

n

)
.

Thus after standardization we have

Z = X̄n − µ
σ/
√
n
∼ N(0, 1).

From the definition of the critical value zα/2: P(Z > zα/2) = α/2 it follows that P(Z <
zα/2) = 1− P(Z > zα/2) = 1− α/2. It means that

P(z1−α/2 < Z < zα/2) = P(Z < zα/2)− P(Z < z1−α/2) = 1− α/2− (1− 1 + α/2) = 1− α.

From the symmetry of N(0, 1) it follows that z1−α/2 = −zα/2. And we have

1− α = P(z1−α/2 < Z < zα/2) = P
(
−zα/2 <

X̄n − µ
σ/
√
n
< zα/2

)

= P
(
−zα/2

σ√
n
< X̄n − µ < zα/2

σ√
n

)
= P

(
zα/2

σ√
n
> µ− X̄n > −zα/2

σ√
n

)
= P

(
−zα/2

σ√
n
< µ− X̄n < zα/2

σ√
n

)
= P

(
X̄n − zα/2

σ√
n
< µ < X̄n + zα/2

σ√
n

)
.

Two-sided

α/2
1− α

α/2

Z = X̄n−µ
σ/
√
n
∼ N(0, 1)

0 zα/2−zα/2 = z1−α/2

One-sided

1− α
α

0 zα−∞
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To obtain the confidence interval for the expectation, we used the fact that for Xi ∼
N(µ, σ2) the sample mean has the normal distribution:

X̄n − µ
σ/
√
n
∼ N(0, 1).

The central limit theorem tells us that for any random sample with expectation µ and finite
variance σ2, the sample mean converges to the normal distribution with increasing sample
size:

X̄n − µ
σ/
√
n

n→∞−→ N(0, 1).

This fact can be utilized to form confidence intervals also for other than normal distributions.
As a consequence of the central limit theorem, for large n we can use the same confidence

intervals even for a random sample from any distribution with a finite variance:
Suppose we have a random sample X1, . . . , Xn from a distribution with EXi = µ and

varXi = σ2, and suppose that we know the variance σ2.
For n large enough, the two-sided 100 · (1−α)% confidence interval for µ can be taken as(

X̄n − zα/2
σ√
n
, X̄n + zα/2

σ√
n

)
,

where zα/2 is the critical value of N(0, 1). The one-sided confidence intervals are constructed
analogously.

• The approximate confidence level of such intervals P
(
µ ∈ (· · · )

)
is then 1− α.

• Large enough usually means n = 30 or n = 50. For some distributions which are further
away from the normal distribution (e.g., not unimodal, skewed), n must be even larger.

1.2.2 Unknown variance

Most often in practice we do not know the variance σ2, but only have the observed data at
our disposal.

As seen last time, the variance can be estimated using the sample variance

s2
n = 1

n− 1

n∑
i=1

(Xi − X̄n)2.

We will now show how to utilize the sample variance and adjust the intervals so that the
confidence level would be exactly 1− α.

Chi-square and Student’s t-distribution
We use the following new distributions:

Definition 1.3. Suppose we have a random sample Y1, . . . , Yn from the normal distribution
N(0, 1). Then we say that the random variable

Y =
n∑
i=1

Y 2
i

has the chi-square (χ2) distribution with n degrees of freedom.
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Definition 1.4. Suppose we have a random sample Y1, . . . , Yn from N(0, 1), Y =
∑n
i=1 Y

2
i

and an independent variable Z also from N(0, 1). Then we say that the random variable

T = Z√
Y/n

has the Student’s t-distribution with n degrees of freedom.

The critical values for both distributions can be found in tables.
We estimate the unknown variance σ2 using the sample variance

s2
n = 1

n− 1

n∑
i=1

(Xi − X̄n)2.

The distribution of the sample variance is connected with the chi-square distribution:

Theorem 1.5. Suppose we have a random sample X1, . . . , Xn from the normal distribution
N(µ, σ2). Then

(n− 1)s2
n

σ2

has the chi-square distribution with n− 1 degrees of freedom.

Proof. See literature.

The distribution of the sample mean with σ replaced by sn =
√
s2
n is connected with the

t-distribution:

Theorem 1.6. Suppose we have a random sample X1, . . . , Xn from the normal distribution
N(µ, σ2). Then

T = X̄n − µ
sn/
√
n

has the Student’s t-distribution with n− 1 degrees of freedom.

Proof. We can rewrite T as:

T = X̄n − µ√
s2
n/n

=
X̄n−µ
σ/
√
n√

(n−1)s2
n

σ2(n−1)

.

The numerator has standard normal distribution N(0, 1), under the square root in the deno-
minator we have χ2

n−1 divided by (n − 1). The distributions of X̄n and s2
n are independent

(see literature), thus the whole fraction has indeed the tn−1 distribution.

Confidence intervals for the expectation
If the variance σ2 is unknown we estimate the σ by taking the square root of the sample

variance sn =
√
s2
n. Standardization of X̄n with sn leads to the Student’s t-distribution:
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Theorem 1.7. Suppose we have a random sample X1, . . . , Xn from the normal distribution
N(µ, σ2) with unknown variance. The two-sided symmetric 100 · (1− α)% confidence interval
for µ is (

X̄n − tα/2,n−1
sn√
n
, X̄n + tα/2,n−1

sn√
n

)
,

where tα/2,n−1 is the critical value of the Student’s t-distribution with n−1 degrees of freedom.
The one-sided 100 · (1− α)% confidence intervals for µ are

(
X̄n − tα,n−1

sn√
n
, +∞

)
and

(
−∞ , X̄n + tα,n−1

sn√
n

)
using the same notation.

As a consequence of the central limit theorem, for large n we can use the same confidence
interval even for a random sample from any distribution.

Suppose we observe a random sample X1, . . . , Xn from any distribution with EXi = µ
and varXi = σ2 and suppose that we do not know the variance σ2.

For n large enough, the two-sided symmetric 100 · (1− α)% confidence interval for µ can
be taken as (

X̄n − tα/2,n−1
sn√
n
, X̄n + tα/2,n−1

sn√
n

)
,

where tα/2 is the critical value of the Student’s t-distribution with n − 1 degrees of freedom
tn−1. The one-sided confidence intervals are constructed analogously.

• For the interval it holds that P
(
µ ∈ (· · · )

)
≈ 1− α.

• Large enough usually means n = 30 or n = 50. For distributions which are further away
from the normal distribution (e.g., not unimodal, skewed), n must be even larger.

Two-sided

α/2
1− α

α/2

T = X̄n−µ
sn/
√
n
∼ tn−1

0 tα/2,n−1−tα/2,n−1

One-sided

1− α
α

0 tα,n−1−∞

Comparison of the critical values of N(0, 1) and tn−1:
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α/2

1− α

α/2

0

tα/2,n−1−tα/2,n−1

zα/2−zα/2

• Confidence intervals for µ for unknown variance σ2 are wider than for σ2 known.

• For n→ +∞ both distributions (and thus also their critical values) coincide.

Example 1.8 (– fishes’ weights). Suppose that the carps’ weights in a certain pond in south
Bohemia are random with normal distribution N(µ, σ2). From 10 previously caught carps we
know that:

10∑
i=1

Xi = 45.65 kg and
10∑
i=1

X2
i = 208.70 kg2.

Find point estimates and two-sided 90% confidence interval estimates for µ and σ2.
Point estimates:

• X̄10 = 1
10

10∑
i=1

Xi = 45.65
10 = 4.565 kg.

• s2
n = 1

n− 1

n∑
i=1

(Xi − X̄n)2 = 1
n− 1

( n∑
i=1

X2
i − n(X̄n)2).

• s2
10 = 208.7− 10 · (4.565)2

9 = 0.0342 kg2.

Find the two-sided 90% confidence interval for µ:(
X̄n − tα/2,n−1

sn√
n
, X̄n + tα/2,n−1

sn√
n

)
(

4.565− 1.833
√

0.0342√
10

, 4.565 + 1.833
√

0.0342√
10

)
X̄10 = 4.565 kg

s2
10 = 0.0342 kg2

α = 10% = 0.1

t0.05,9 = 1.833

Two-sided 90% confidence interval for µ is

(4.4578 , 4.6722) kg.

Find the lower 90% confidence interval for µ:

(
−∞ , X̄n + tα,n−1

sn√
n

)
(
−∞ , 4.565 + 1.383

√
0.0342√

10

)
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X̄10 = 4.565 kg
s2

10 = 0.0342 kg2

α = 10% = 0.1

t0.1,9 = 1.383

The lower 90% confidence interval for µ is then

(−∞ , 4.646) kg.

If the fish seller would tell us that the expected weight is 4.8 kg, we can say with 90% certainty
that it is not true.

Such considerations form the basis of hypothesis testing, see later.

1.3 Confidence intervals for the variance

Theorem 1.9. Suppose we observe a random sample X1, . . . , Xn from the normal distribution
N(µ, σ2). The two-sided 100 · (1− α)% confidence interval for σ2 is(

(n− 1)s2
n

χ2
α/2,n−1

,
(n− 1)s2

n

χ2
1−α/2,n−1

)
,

where χ2
α/2,n−1 is the critical value of the χ2 distribution with n− 1 degrees of freedom, i.e.,

P(X > χ2
α/2,n−1) = α/2 if X ∼ χ2

n−1.
The one-sided 100 · (1− α)% confidence intervals for σ2 are then(

(n− 1)s2
n

χ2
α,n−1

, +∞
)

and
(

0 , (n− 1)s2
n

χ2
1−α,n−1

)
.

X The statement holds only for the normal distribution!

Proof. We know that
(n− 1)s2

n

σ2

has the chi-square distribution χ2
n−1. Then the confidence interval can be established using

the critical values:

P
(
χ2

1−α/2,n−1 <
(n− 1)s2

n

σ2 < χ2
α/2,n−1

)
= 1− α.

By multiplying all parts by σ2 and dividing with the critical values we get that indeed:

P
(

(n− 1)s2
n

χ2
α/2,n−1

< σ2 <
(n− 1)s2

n

χ2
1−α/2,n−1

)
= 1− α.
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α/2
1− α

α/2

(n−1)s2n
σ2 ∼ χ2

n−1

0 χ2
1−α/2,n−1 χ2

α/2,n−1

1− α
α

0 χ2
α,n−1

(n−1)s2n
σ2 < χ2

α,n−1 ⇒ (n−1)s2n
χ2
α,n−1

< σ2

Example 1.10 (– fishes’ weights – continuation). Find the two-sided 90% confidence interval
for the variance σ2 of the carps’ weights:(

(n− 1)s2
n

χ2
α/2,n−1

,
(n− 1)s2

n

χ2
1−α/2,n−1

)
(9 · 0.0342

16.919 ,
9 · 0.0342

3.325

)
s2

10 = 0.0342 kg2

α = 10% = 0.1

χ2
0.05,9 = 16.919

χ2
0.95,9 = 3.325

The two-sided 90% confidence interval for σ2 is

(0.0182 , 0.0926) kg2.

Find the upper one-sided 90% confidence interval for the variance σ2 of the carps’ weights:(
(n− 1)s2

n

χ2
α,n−1

, +∞
)

(9 · 0.0342
14.684 , +∞

)
s2

10 = 0.0342 kg2

α = 10% = 0.1

χ2
0.1,9 = 14.684

The upper one-sided 90% confidence interval for σ2 is then

(0.0210 , +∞) kg2.

If the fish seller would tell us that the variance of the weights is 0.01 kg2, meaning that the
standard deviation is 100 grams, we could say with 90% certainty that it is not true.
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