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2 Conditional probability and independence

2.1 Conditional probability

Many statements about chance take the form “if B occurs, then the probability of A is p”
where B and A are events.

How does the probability change if we have partial information about the result of the
experiment?

Example 2.1. When rolling a balanced die with no additional information, we know that
P(4) = 1/6.

If we know that an even number was rolled, then it is clear that P(4 | even) = 1/3.

Consider the uniform distribution on a set Ω with a finite “size” (e.g., the number of
elements, length, area, capacity, time, etc.).

The probability of an event A is then defined as the by ratio of “sizes” as

P(A) = size(A)/size(Ω).

If we know that an event B surely occurred, we are in fact interested only in outcomes of the
experiment favorable to the event B. Favorable outcomes to the event A are now in A ∩ B
and all of them must be in B (B surely occurred). We have

P(A|B) = size(A ∩B)
size(B) = size(A ∩B)/size(Ω)

size(B)/size(Ω) = P(A ∩B)
P(B) .

Definition 2.2. Let A,B be events and P(B) > 0. The conditional probability of the event
A given (the event) B is denoted by P(A|B) and is defined as

P(A|B) = P(A ∩B)
P(B) .

Ω
A

P(A) = area(A)
area(Ω)

Ω
BA P(A given B) = area(part of A inside B)

area(B)

P(A|B) = area(A ∩B)
area(B)

/ area(Ω)
/ area(Ω)

P(A|B) = P(A ∩B)
P(B)

P(A ∩B) = P(A|B) P(B)

P(A ∩B) = P(B|A) P(A)

P(intersection) = P(event | condition) P(condition)
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Example 2.3 (– rolling two dice). Consider two rolls of a die. What is P(sum > 6 | first = 3)?

The answer is surely 1/2, since the second rolled number must be 4, 5, or 6.

Formally: Ω = {1, 2, 3, 4, 5, 6}2,
P(A) = |A|/36 for each A ⊂ Ω.

Let B = {(3, ω2) : 1 ≤ ω2 ≤ 6}, A = {(ω1, ω2) : ω1 + ω2 > 6}.
Then

P(A | B) = P(A ∩B)
P(B) =

|A∩B|
36
|B|
36

= |A ∩B|
|B|

= 3
6 .

Example 2.4 (– family with two children). A trickier example:
A family has two children. What is the probability that both are boys, given that at least

one of them is a boy? I.e., what is the value of P(both boys | at least one is a boy)?

Ω = {GG,GB,BG,BB}.

P(BB|BG ∪GB ∪BB) = P(BB ∩ (BG ∪GB ∪BB))
P(BG ∪BG ∪BB)

= P(BB)
P(BG ∪GB ∪BB) = 1/4

3/4 = 1
3 .

Incorrect: P(BB|older is boy) = P(BB|BG ∪BB) = P(BB ∩ (BG ∪BB))
P(BG ∪BB) = 1

2.

Lemma 2.5. Let P(B) > 0. Then the conditional probability P(·|B) is a probability measure,
i.e., P(·|B) ∈ [0, 1] and it fulfills the axioms of probability.

Proof. We need to prove the following:

i) P(·|B) : F → R,

ii) non-negativity: for all A ∈ F it holds P(A|B) ≥ 0,

iii) normalization: P(Ω|B) = 1, P(Ω|B) = P(Ω ∩B)
P(B) = P(B)

P(B) = 1,

iv) σ−additivity: If A1, A2, . . . ∈ F are mutually disjoint events (i.e., Ai ∩ Aj = ∅ for ∀i, j :
i 6= j), then

P
(+∞⋃

i=1
Ai

∣∣∣B) =
P
((⋃+∞

i=1 Ai

)
∩B

)
P(B) =

P
(⋃+∞

i=1 (Ai ∩B)
)

P(B) = · · · =
+∞∑
i=1

P(Ai|B).

Conditional probability fulfills all mentioned properties of probability as well:

• if A1 and A2 are mutually disjoint, then P(A1 ∪A2|B) = P(A1|B) + P(A2|B),

• P(A1 ∪A2|B) = P(A1|B) + P(A2|B)− P(A1 ∩A2|B),
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• P(Ac|B) = 1− P(A|B),

• etc.

Moreover, the probability P(A|B) “lives” on B: for A ∩B = ∅ we have P(A|B) = 0.

Furthermore, P(A ∩B|B) = P(A ∩B ∩B)
P(B) = P(A ∩B)

P(B) = P(A|B).

2.2 Case distinct formula and Bayes’ Theorem

Case distinct formula (Law of total probability)
Ω = B1 ∪B2 ∪B3 (disjoint partition)

B1 B2 B3

A

A ∩B1

A ∩B2
A ∩B3

Recall:

P(A|Bi) = P(A ∩Bi)
P(Bi)

P(A ∩Bi) = P(A|Bi) P(Bi)

A = A ∩ Ω = A ∩ (B1 ∪B2 ∪B3)
A = (A ∩B1) ∪ (A ∩B2) ∪ (A ∩B3)

P(A) = P(A ∩B1) + P(A ∩B2) + P(A ∩B3)

P(A) = P(A|B1) P(B1) + P(A|B2) P(B2) + P(A|B3) P(B3)

Bayes’ Theorem = converse procedure
At the end we observe A and we ask ourselves, what is the probability that the event Bj

occurred.
Ω = B1 ∪B2 ∪B3 (disjoint partition)

B1 B2 B3

A

A ∩B1

A ∩B2
A ∩B3
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Recall:
P(A ∩Bj) = P(A|Bj) P(Bj) P(A) = P(A|B1) P(B1) + P(A|B2) P(B2) + P(A|B3) P(B3)

P(Bj |A) =
P(A ∩Bj)

P(A)

P(Bj |A) = P(A|Bj) P(Bj)
P(A|B1) P(B1) + P(A|B2) P(B2) + P(A|B3) P(B3)

Bayes’ Theorem (Thomas Bayes, 1701–1761)
A family of mutual disjoint events B1, B2, . . . Bn is called a partition of the set Ω, if

Ω =
n⋃

i=1
Bi.

Theorem 2.6 (– case distinct formula (Law of total probability)). Let B1, B2, . . . , Bn be a
partition of Ω such that ∀ i : P(Bi) > 0.

Then for each event A it holds that

P(A) =
n∑

i=1
P(A|Bi) P(Bi).

Theorem 2.7 (– Bayes’ Theorem). Let B1, B2, . . . , Bn be a partition of Ω such that ∀ i :
P(Bi) > 0 and let A be an event with P(A) > 0. Then it holds that

P(Bj |A) = P(A|Bj) P(Bj)∑n
i=1 P(A|Bi) P(Bi)

.

Bayes’ Theorem – example

Example 2.8 (– spam filter). From the analysis of our email account we find out that:

• 30% of all delivered messages is spam;

• in 70% of spam messages there is the word “copy”;

• only in 10% of non-spam messages there is the word “copy”.

Calculate the probability that a message containing the word “copy” is a spam,

S: set of spam messages, Sc = Ω \ S: set of non-spam messages, C: set of messages
containing word “copy”, Cc: set of messages not containing the word “copy”.

P(S) = 0.3, P(Sc) = 0.7, P(C|S) = 0.7, P(C|Sc) = 0.1

P(S|C) = P(C|S) P(S)
P(C|S) P(S) + P(C|Sc) P(Sc) = 0.7 · 0.3

0.7 · 0.3 + 0.1 · 0.7 = 21
28 = 0.75.
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2.3 Probability trees

Probability trees
First let us recall a useful relation: From the definition of conditional probability it follows

that:
P(A ∩B) = P(A|B) P(B).

For 3 events it similarly holds that:

P(A ∩B ∩ C) = P(A) P(B|A) P(C|A ∩B),

which can be proven by using the definition of conditional probability on the right hand side:

P(A) P(B|A) P(C|A ∩B) = P(A)P(B ∩A)
P(A)

P(C ∩ (A ∩B))
P(A ∩B)

= P(A ∩B ∩ C).

Lemma 2.9 (– Multiplicative law). Let for events A1, . . . , An hold that P(A1∩· · ·∩An) > 0.
Then it holds that

P(A1 ∩ · · · ∩An) = P(A1) P(A2|A1) P(A3|A1 ∩A2) . . .P(An|A1 ∩ · · · ∩An−1).

Proof. We apply successively the relation P(A ∩B) = P(A) P(B|A) following from the defi-
nition of conditional probability:

P(A1 ∩ · · · ∩An) = P(A1 ∩ · · · ∩An−1) P(An|A1 ∩ · · · ∩An−1)
= P(A1 ∩ · · · ∩An−2) P(An−1|A1 ∩ · · · ∩An−2) P(An|A1 ∩ · · · ∩An−1)
= . . . .

Example – spam filter

Ω

Sc

Sc ∩ Cc P(Sc ∩ Cc) = 0.7 · 0.9 = 0.63

Without copy (C c)P(C c|S c) = 0.9

Sc ∩ C P(Sc ∩ C) = 0.7 · 0.1 = 0.07
Copy (C)

P(C|S
c ) = 0.1

Non-spam
(S c)

P(S c) = 0.7

S

S ∩ Cc P(S ∩ Cc) = 0.3 · 0.3 = 0.09

Without copy (C c)P(C c|S) = 0.3

S ∩ C P(S ∩ C) = 0.3 · 0.7 = 0.21
Copy (C)

P(C|S) = 0.7

Spam
(S)

P(S) = 0.3
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P(S|C) =
P(S ∩ C)

P(C)
= 0.21

0.21 + 0.07 = 0.75

Example 2.10 (– multiplicative law). Suppose we draw cards without replacement from a
52 cards deck. What is the probability that in a sequence of 3 cards drawn one after another
there are no hearts? Ai = {i-th card is not hearts}, i = 1, 2, 3.

P(A1 ∩A2 ∩A3) = P(A1) P(A2|A1) P(A3|A1 ∩A2) = 39
52 ·

38
51 ·

37
50

.= 41.4%.
Illustration of computation by means of probability tree:

•

P (A1)
A1

P (Ac
1)

•

•

P (A2|A1)
A2

P (Ac
2|A1)

•

•

P (A3|A1 ∩A2)

A3

P (Ac
3|A1 ∩A2)

•

• P (A1 ∩A2 ∩A3)

P (A1 ∩A2 ∩Ac
3)

1

•

39/52

13/52

•

•

38/51

13/51

•

•

37/50

13/50

•

• 39
52 · 38

51 · 37
50

39
52 · 38

51 · 13
50

1

The probability of a given vertex of the tree is the product of the corresponding values on
the path stemming from the root.

Misinterpretations of conditional probability
Many data misinterpretations and fallacies are based on incorrect understanding of con-

ditional probabilities:

Example 2.11 (– driving under influence).

• It was observed that approximatively 10% of fatal car accidents are caused by drunk
drivers (46 out of 454 road fatalities in 2022 in the Czech Republic according to the
yearly police report).

• This means that 90% of fatal accidents are caused by sober drivers!

• Does this mean that we should should beware of the sober drivers?

Of course not. We have to carefully read the probabilities.
The figure tells us that among all accidents, the percentage caused by drunk drivers is

10%. Thus
P(drunk|accident) = 0.1.

What we are trying to find out is the reverse conditional probability P(accident|drunk).
From a different study, we have found out that less than 1% of drivers are driving under

influence. The overall chance of accident is difficult to determine, so we will compute just how
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more likely it is to cause an accident for drunk drivers:

P(accident|drunk)
P(accident|sober) = P(accident ∩ drunk)/P(drunk)

P(accident ∩ sober)/P(sober)

= P(drunk|accident) · P(accident)/P(drunk)
P(sober|accident) · P(accident)/P(sober) = 0.1/0.01

0.9/0.99 = 11.

Drunk drivers have at least 11 times higher probability of causing a fatal accident.

2.4 Independence of events

Independence of events
Intuitively: A and B are independent if the probability of the event A is not influenced

by the knowledge about occurrence of the event B, i.e., P(A|B) = P(A), and (vice versa)
P(B|A) = P(B).

Definition 2.12. Events A and B are called independent, if

P(A ∩B) = P(A) P(B).

Generally, a family of events {Ai | i ∈ I} is called independent if

P
(⋂

i∈J

Ai

)
=
∏
i∈J

P(Ai)

for all finite non-empty subsets J of I.

-

Example 2.13 (– rolling a die). Consider the events A: ”an even number is rolled” and
B: ”a number less than 3 is rolled”.

Are the events A and B independent?

A = {2, 4, 6}, B = {1, 2}, A ∩B = {2}.

P(A ∩B) = 1
6 and P(A) P(B) = 3

6 ·
2
6 = 1

6 .

Then the events A and B are independent.

Example 2.14 (– rolling a die). Consider the events A: ”an even number is rolled” and
B: ”number 4 is rolled”.

Are the events A and B independent?

A = {2, 4, 6}, B = {4}, A ∩B = {4}.

P(A ∩B) = 1
6 and P(A) P(B) = 3

6 ·
1
6 = 1

12 .

Then events A and B are not independent.
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Relation between independence and conditional probability
Let A and B be independent events and P(B) > 0. Then clearly

P(A|B) = P(A ∩B)
P(B) = P(A) P(B)

P(B) = P(A).

For A and B independent the knowledge of B does not bring us any information about A.

Theorem 2.15. If the events A and B are independent then A and Bc (resp., Ac and B; Ac

and Bc) are independent, too.

Theorem 2.16. If (Ai)i∈I is a family of independent events, then for any arbitrary non-empty
finite subset ∅ 6= J ⊂ I it holds that

P

⋂
i∈J

Ai |
⋂

i∈I\J
Ai

 = P
(⋂

i∈J

Ai

)
.

Independent vs disjoint events
A common error is to make the fallacious statement that A and B are independent if

A ∩B = ∅.

In fact, disjoint events A and B are independent only if P(A) = 0 or P(B) = 0.

If A and B are disjoint with non-zero probabilities, then the knowledge that B occurred
tells us that A cannot occur.

The events being disjoint is a matter of sets, independence is a matter of probabilities.

Conditional independence

Definition 2.17. Let (Ω,F ,P) be a probability space and C an event with P(C) > 0. Events
A and B are called conditionally independent with respect to C, if

P(A ∩B|C) = P(A|C) P(B|C).

Recall:

• Q(A) = P(A|C) is a probability measure;

• the conditional independence is thus the independence with respect to probability Q.

Example 2.18 (– rolling a seven-sided die). Suppose we roll a seven-sided die with all sides
equally likely. Consider the events: A: ”an even number is rolled”, B: ”a number less than
3 is rolled”.

Are the events A and B independent? A = {2, 4, 6}, B = {1, 2}, A ∩B = {2}.

P(A ∩B) = 1
7 and P(A) · P(B) = 3

7 ·
2
7 = 6

49 .

Events A and B are not independent.
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Example 2.19 (– rolling a seven-sided die + condition). Consider further event C: ”we rolled
at most 6” C = {1, 2, 3, 4, 5, 6}.

Are events A and B conditionally independent with respect to C?

P(A ∩B|C) = P(A ∩B ∩ C)
P(C) = P({2})

P({1, . . . , 6}) = 1/7
6/7 = 1

6 ,

P(A|C) · P(B|C) = 3/7
6/7 ·

2/7
6/7 = 1

6 .

Events A and B are conditionally independent with respect to C.
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