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3 Random variables

3.1 Definition of a random variable, distribution function

Random variable
For a mathematical processing of a random experiment it is often useful to assign a number

to each outcome ω. By this assignment we choose the part of information which is interesting
from our point of view.

Such assignment can be established in many ways and will be called a random variable.
For example, many gamblers are more concerned with their wins and losses than with the
games which gives rise to them.

Sample space
Ω R

X

Examples 3.2.

• Number of Heads while tossing a coin: X(Heads) = 1, X(Tails) = 0.
• Number of winnings in the game with: X(Heads) = 1, X(Tails) = −1.
• How much a player won in a given game at a poker tournament.
• The highest rolled value or n rolls of a die.
• The height of a randomly chosen person.

Example 3.3 (– minimum of two rolls of a 4-sided die). Two rolls of a 4-sided die. Ω =
{1, 2, 3, 4}2.

Consider a random variable X(ω) = min{ω(1), ω(2)}:

R
•
1

•
2

•
3

•
4

• • • •

• • • •

• • • •

• • • •

1 2 3 4

1

2

3

4

X

P(X = 1) = P({ω|X(ω) = 1})

= P({(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1)}) = 7
16 .

Similarly,

P(X = 2) = P({(2, 2), (2, 3), (2, 4), (3, 2), (4, 2)}) = 5
16 ,

P(X = 3) = P({(3, 3), (3, 4), (4, 3)}) = 3
16 ,

P(X = 4) = P({(4, 4)}) = 1
16 .
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Random variable and its distribution function

Definition 3.4. A random variable X on a probability space (Ω,F ,P) is a function X : Ω→
R, assigning to each outcome ω ∈ Ω a number X(ω), with the property that:

{X ≤ x} ∈ F , ∀x ∈ R.

Such a function is said to be F-measurable.

Notes:

• In more details by means of pre-image of the set X−1(·) we can write {X ≤ x} = {X ∈
(−∞, x]} = X−1((−∞, x]) = {ω ∈ Ω: X(ω) ∈ (−∞, x]} = {ω ∈ Ω: X(ω) ≤ x}.

• The measurability property in fact tells us that {X ≤ x} is an event and allows us to
compute P(X ≤ x), P(X = x), P(X ∈ (a, b)), etc.

• This condition must be met, but in practice we never verify it.

The probability distribution of a random variable is given by its distribution function:

Definition 3.5. The distribution function of a random variable X is a function F : R→ [0, 1]
defined as

F (x) = P(X ≤ x).

There are various types of random variables.

• Some can take only isolated values (e.g., 0 or 1 for Heads and Tails of a coin toss, 1, . . . , 6
for a die roll).

• Some can take values from a continuous interval (e.g., weight of a newborn, time spent
waiting for a bus, . . . ).

This divides the variables into discrete and continuous. For discrete random variables, we

will be interested in probabilities of the singular values, whereas for continuous we will work
with probabilities of intervals. Regardless of the type, the distribution function gives us a

full description of the random variable. For any real number x, we can answer the question:

”what is the probability that the random variable will be less than or equal to x”? This

allows us to answer questions about any equalities and inequalities.

Properties of the distribution function

Theorem 3.6. The distribution function F of a random variable X has following properties:

i) F is non-decreasing: if x < y, then F (x) ≤ F (y)

ii) F “starts at 0 and ends at 1”: lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

iii) F is right continuous: lim
y→x+

F (y) = F (x)
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Proof. i) Recall the notation {X ≤ x} = {ω ∈ Ω : X(ω) ≤ x}. Consider the disjoint
partition

{X ≤ y} = {X ≤ x} ∪ {x < X ≤ y},

therefore F (y) = P(X ≤ y) = P(X ≤ x) + P(x < X ≤ y) ≥ P(X ≤ x) = F (x).

ii) For simplicity we only sketch the proof by means of a sequence of events Bn = {X ≤ −n}.
For n→∞ it is decreasing in the sense of inclusion with the intersection equal to ∅, i.e.,
Bn ↘ ∅. From the continuity of probability theorem we have P(Bn)→ P(∅) = 0. For the
proof of the second statement it is enough to consider a sequence An = {X ≤ n} ↗ Ω
and from the same theorem we have P(An)→ P(Ω) = 1.

iii) Similarly as ii) (see bibliography).

By means of the distribution function it is possible to express some important properties.

Lemma 3.7. Let F be a distribution function of a random variable X, then it holds that:

i) P(X > x) = 1− F (x),

ii) P(X ∈ (x, y]) = P(x < X ≤ y) = F (y)− F (x),

iii) P(X < x) = lim
y→x−

F (y),

iv) P(X = x) = F (x)− lim
y→x−

F (y).

Proof. i) Ω = {X > x}∪{X ≤ x} is a disjoint partition. Therefore P({X > x}) = P({X ≤
x}c).

ii) See proof of i) of the previous theorem.

iii) See bibliography. Idea of the proof using a non-decreasing sequence and continuity of
probability:

{X ≤ x− 1/n} ↗ {X < x} ⇒ F (x− 1/n) = P(X ≤ x− 1/n)→ P(X < x).

iv) {X ≤ x} = {X < x} ∪ {X = x} is a disjoint partition. Therefore P(X = x) = P(X ≤
x)− P(X < x).

Types of random variables and their distribution functions
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0 1 2 3
0

1
Discrete random variable

-4 0 4
0

1
Continuousrandom variable

-4 0 1 4
0

1
Mixed random variable

3.2 Discrete random variables

Definition 3.8. A random variable X is called discrete if it takes only values from some
countable set {x1, x2, . . . }.
Probabilities of the values of a discrete random variable X are given by

P(X = xk), k = 1, 2, . . .

The probabilities P(X = xk) can be viewed as a function of x and are sometimes called
a probability function, or a probability mass function or a discrete density of the variable X.
The distribution function of a discrete random variable has the form

FX(x) = P(X ≤ x) =
∑

all xk≤x
P(X = xk).

From this it follows that FX(x) has jumps at points xk and it is constant elsewhere. The size
of the jump at point xk is equal to P(X = xk).

Example 3.9 (– toss with two coins). The sample space is Ω = {(H,H), (H,T), (T,H), (T,T)}.
Let the random variable X give the number of Heads. The distribution function is FX(x) =
P(X ≤ x):

•T
T

•H

•
H

•

0 1 2 x

1
4

3
4

1

FX

•

•
•
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The distribution function FX = P(X ≤ x) is given by

FX(x) =


0 for x < 0 P(∅)
1/4 for 0 ≤ x < 1 P({(T,T)})
3/4 for 1 ≤ x < 2 P({(T,T), (H,T), (T,H)})
1 for 2 ≤ x P(Ω).

Example 3.10 (– toss with two coins). The sample space is Ω = {(H,H), (H,T), (T,H), (T,T)}.
Let the random variable X give the number of Heads.

Draw the probabilities of the values and the distribution function.

0 1 2 x

1/4
1/2

1

P(X = x)

•
•

•

0 1 2 x

1
4

3
4

1

FX

•

•
•

When assigning probabilities to the values xk, the normalization condition must hold:∑
all xk

P(X = xk) = 1.

Generally, for computing P(X ∈ B), with B ⊂ R, it is enough to know the probabilities
of the possible values X: P({X ∈ B}) =

∑
xk∈B

P(X = xk).

A series with non-negative elements does not depend on the order of summands. Therefore
the series can be summed over all possible values of random variable X without giving the
exact ordering. Notice moreover, that pX(x) > 0 only for a finite or countable number of
points x.

The distribution of X can be equivalently given by FX or by the probabilities. Considering
that P(X = xk) = FX(xk)− FX(xk−1) (we are considering an increasing ordering x1 < x2 <
x3 < . . . ), the knowledge of the distribution function is equivalent to the knowledge of the
probabilities P(X = xk).

Computation of the probabilities P(X = xk):
Collect all ω for which X(ω) = x and sum their probabilities.

Computation of the distribution function FX(x) = P(X ≤ xk):
Collect all ω for which X(ω) ≤ x and sum their probabilities.

Remark 3.11. A random variable X can be discrete even if the sample space itself is not
discrete.

Example 3.12. Let us throw darts at a target T ⊂ R2.
The target can be divided into parts (often concentric annulus), denoted as T1, T2, T3, T4, T5.

6 c© 2011–2023 BIE-PST, WS 2023/24
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We can consider a discrete random variable X denoting the points obtained from one
throw, for example

X(ω) =


10 for ω ∈ T5
5 for ω ∈ T4
i for ω ∈ Ti, i = 1, 2, 3

Example 3.13 (– minimum of two rolls of a 4-sided die (continuation)). X = min{1st roll, 2nd roll}:

R
•
1

•
2

•
3

•
4

• • • •

• • • •

• • • •

• • • •

1 2 3 4

1

2

3

4

X

Probabilities:

x1 2 3 4

pX

7/16

5/16

3/16

1/16

• • • •

• • • •

• • • •

• • • •

1 2 3 4

1

2

3

4

Distribution function:

x1 2 3 4

FX

1

7
16

12
16

15
16

• • • •

• • • •

• • • •

• • • •

1 2 3 4

1

2

3

4

Example 3.14. [Important discrete probability distributions]

• Bernoulli (Alternating) distribution with a parameter p ∈ [0, 1], X ∼ Be(p):
(One toss of an unbalanced coin.)

P(X = 1) = p, P(X = 0) = 1− p.

• Binomial distribution with parameter p ∈ [0, 1], X ∼ Binom(n, p):
(Number of Heads in n tosses of an unbalanced coin.)

P(X = k) =
(
n

k

)
pk(1− p)n−k

• Geometric distribution with a parameter p ∈ (0, 1), X ∼ Geom(p):
(Number of tosses of an unbalanced coin until the first Heads appear.)

P(X = k) = (1− p)k−1p

• Poisson distribution with a parameter λ > 0, X ∼ Poisson(λ):
(Limit of the Binomial distribution for n → ∞.)

P(X = k) = λk

k! e
−λ
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3.3 Continuous random variables

In some situations, a random variable can take uncountably many possible values. This arises

when dealing with continuous models – measuring time, height, coordinates, etc. We cannot

assign a positive probability P(X = x) to each value, because then the probabilities of the
uncountable many values would sum up to infinity. Therefore we regard each singular value

as having zero probability (intuitively, it is, e.g., infinitely improbable having to wait for the
bus for exactly 3 : 00 : 00... minutes). Instead, we need a way to measure the probability

of intervals. Recall the Romeo and Juliet problem, where each of them arrives at a random

time point in an one-hour window, evenly chosen. Often we need to introduce an uneven

distribution of values.

Definition 3.15. A random variable X is called (absolutely) continuous, if there exists a
non-negative function fX : R → [0,+∞) such that for all x ∈ R the distribution function
FX can be expressed as

FX(x) =
x∫

−∞

fX(t) dt.

The function fX is called the probability density of the random variable X.

fX

FX(x) = P(X ≤ x)

x

The distribution function of a continuous random variable is continuous.

Properties of continuous random variables

Theorem 3.16. Let fX be a density of a continuous random variable X. Then it holds that

i)
+∞∫
−∞

fX(t)dt = 1 ( normalization condition),

ii) P(X = x) = 0 for all x ∈ R,

iii) fX(t) = dFX
dt (t) at points where the derivative exists,

iv) P(a < X ≤ b) =
b∫
a

fX(t) dt = FX(b)− FX(a),

8 c© 2011–2023 BIE-PST, WS 2023/24
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v) P(X ∈ B) =
∫
B

fX(t)dt for all B in the Borel σ-algebra on R, i.e., for all “common”

sets.

Consequences:

• P(X ≤ x) = P(X < x) – from ii)

• fX(t)dt ≈ P(t < X < t+ dt) for dt << 1 – from iv)

Proof. i)
+∞∫
−∞

fX(x)dx = lim
x→+∞

FX(x) = 1.

ii) Using the continuity of the distribution function and the previous theorem: P(X = x) =
F (x)− lim

y→x−
F (y) = 0.

iii) It follows from the properties of derivatives and integrals (first fundamental Theorem of
calculus).

iv) P(a < X ≤ b) = F (b) − F (a) =
b∫

−∞

fX(t)dt −
a∫

−∞

fX(t)dt =
b∫
a

fX(t)dt. (second funda-

mental Theorem of calculus – Newton’s formula)

v) From the properties of the Lebesgue integral – advanced, see bibliography.

Relation between density and probability
Now we recall and illustrate the important property of the probability density:

P(a < X ≤ b) =
b∫
a

fX(x) dx =
[
F (x)

]b
a

= F (b)− F (a).

fX

P(a < X ≤ b)

ba

Note that when dealing with continuous random variables, it does not matter whether the
inequalities are strict or non-strict.

P(a < X ≤ b) = P(a ≤ X ≤ b) = P(a ≤ X < b) = P(a < X < b).

c© 2011–2023 BIE-PST, WS 2023/24 9
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Example 3.17 (– uniform distribution of Romeo’s arrival). Denote the time when Romeo
arrives at the meeting point as a random variable X. Suppose that X has the uniform dis-
tribution on the interval [0, 1], meaning that its density is constant on this interval and zero
elsewhere.

fX(x) =
{
c for x ∈ [0, 1]
0 otherwise.

Determine the value of c, so that f truly forms a density of a random variable. From the
normalization condition we know that the area under the graph of the density needs to be
equal to one. Therefore the density needs to integrate to one:

∞∫
−∞

fX(x)dx =
1∫

0

c · dx = [c · x]10 = c · 1− c · 0 = c = 1.

The constant c has to be equal to one.
Example 3.17 (– uniform distribution of Romeo’s arrival (continued)). Density of the con-
tinuous uniform distribution on the interval [0, 1]:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Example 3.17 (– uniform distribution of Romeo’s arrival (continued)). What is the proba-
bility that Romeo arrives between 12:15 and 12:45? Probabilities concerning intervals are
obtained as the corresponding area under the density:

3/4∫
1/4

1dx = [x]3/4
1/4 = 3

4 −
1
4 = 1

2 .

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2
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Example 3.18 (– non-uniform distribution of Juliet’s arrival). Suppose that Juliet arrives
at the meeting point according to a non-uniform distribution with density:

fX(x) =


4x for x ∈ [0, 1/2]
4− 4x for x ∈ [1/2, 1]
0 otherwise.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

What is the probability that Juliet arrives between 12:15 and 12:45?

Example 3.18 (– non-uniform distribution of Juliet’s arrival (continued)). What is the
probability that Juliet arrives between 12:15 and 12:45? Probabilities concerning intervals
are obtained as the corresponding area under the density:

3/4∫
1/4

f(x)dx = · · · = 3
4 .

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Note that when the distribution of the arrivals is not uniform, the probability that they will
meet cannot be obtained using the geometric approach as before.

3.4 Functions of random variables

For a random variable X with a known distribution, we are often interested in the distribution
of values somehow calculated from the values of X, say Y = g(X).

Example 3.19 (– linear transformation). Let X Be a random temperature in degrees Celsius.
Then Y = 1.8X + 32 corresponds to the temperature in degrees Fahrenheit.

In the case of a discrete random variables the situation is relatively easy.

• g(X) is always a random variable.

• The distribution of the random variable g(X) is always discrete.

c© 2011–2023 BIE-PST, WS 2023/24 11
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If X is a continuous random variable, the following complications arise:
• It can happen that g(X) is not a random variable. (Therefore the assumption of mea-

surability of g is needed.)

• The distribution of a random variable g(X) can be discrete, continuous or mixed.

Function of a discrete random variable
Lemma 3.20 ( – function of discrete random variable). Consider a function g : R → R
and a discrete random variable X, and define the function of the random variable g(X) by
g(X)(ω) = g(X(ω)) for all ω ∈ Ω.

Then g(X) is a discrete random variable with probabilities of the values

P(g(X) = y) =
∑

xk:g(xk)=y
P(X = xk).

Proof. The probabilities of the values of g(X) can be obtained from the (countable) disjoint
partition

{g(X) = y} =
⋃

xk:g(xk)=y
{X = xk}.

Functions of random variables
Lemma 3.21 ( – function of a general random variable). Consider a measurable function
g : R→ R and an arbitrary random variable X and define the function of random the variable
g(X) as g(X)(ω) = g(X(ω)) for all ω ∈ Ω.

Then the function g(X) of the random variable X is a random variable.
Note: g is measurable if the set {x ∈ R : g(x) ≤ y} belongs to the Borel σ-algebra B on R

for all y ∈ R.

Proof. The proof that g(X) is a random variable consists in verifying the measurability of
Y = g(X), i.e., that {Y ≤ y} is an event for all y:

{g(X) ≤ y} = {ω ∈ Ω: g(X(ω)) ≤ y} ∈ F , ∀y ∈ R.

A detailed proof can be found in the bibliography.

Remark 3.22. Generally for a distribution function FY (y) of a random variable Y = g(X) it
holds that

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P
(
{ω ∈ Ω: g(X(ω)) ≤ y}

)
.

If Y is continuous we obtain fY as the derivative of FY (y) with respect to y.
Possible simplification:
• If the inverse g−1 of g exists and is increasing, then it holds that

FY (y) = P(g(X) ≤ y) = P
(
X ≤ g−1(y)

)
= FX

(
g−1(y)

)
.

• If g is strictly monotone, then g−1 is differentiable and Y = g(X) is continuous with

fY (y) = fX
(
g−1(y)

) dg−1(y)
dy .

X Proofs and more information can be found in bibliography.

12 c© 2011–2023 BIE-PST, WS 2023/24
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3.5 Quantile function and simulations

Quantile function
The distribution function gives us the probability that the random variable in question

will be less than or equal to x.

Sometimes we are interested in a reverse approach – for a given probability α, find such
x, so that P(X ≤ x) = α.

Definition 3.23. LetX be a random variable with distribution function FX and let α ∈ (0, 1).
The point qα is called the α-quantile of the variable X if and only if

qα = inf{x|FX(x) ≥ α}.

qα treated as a function of α is called the quantile function and is denoted by F−1
X (α).

For FX strictly increasing and continuous, qα is the point for which it holds that

FX(qα) = P(X ≤ qα) = α,

thus the notation F−1
X denotes the actual inverse of FX .

Theorem 3.24. Suppose that X has a distribution with a distribution function FX . Suppose
that U has a uniform distribution on the interval [0, 1], meaning that

fU (u) =
{

1 for u ∈ (0, 1)
0 elsewhere.

Then the random variable F−1
X (U) has the same distribution as X.

Proof. For a continuous FX :

P(F−1
X (U) ≤ x) = P(U ≤ FX(x)) =

FX(x)∫
0

1 · du = FX(x).

This way, we can generate values from any distribution by generating values from the
uniform distribution U(0, 1) and finding the corresponding quantiles.

Generating uniform random numbers
Truly random numbers can be generated by measuring physical phenomena, such as using
oscillators or thermal devices. Computer algorithms can only produce pseudo-random num-

bers, which try to appear as truly random. There are many ways to generate pseudo-random
numbers. Congruent generators (fast and easy to implement):

• select large integers a, b and m;

• choose a starting value X0;

c© 2011–2023 BIE-PST, WS 2023/24 13
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• generate a sequence Xn+1 = (aXn + b) mod m;

• divide all results by m.

More sophisticated generators (used in R, Matlab, etc):

• Mersenne Twister

• Wichmann-Hill

• many others (see literature).

Generating dice rolls
When rolling a six-sided dice, we easily find out that F−1

X (U) = d6 ·Ue. We generated 100
random dice rolls and counted the percentage of each outcome:

Frequencies of 100 generated dice rolls

value

pr
op

or
tio

n

1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

0.
20
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