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5 Important discrete distributions

5.1 Constant random variable

A constant random variable describes a non-random situation when we have only one possible
result occurring with probability of 1.

Definition 5.1. A random variable X is called constant, if for some c ∈ R it holds that:

X(ω) = c for all ω ∈ Ω.

In other words it holds that:

P(X = c) = 1, P(X = x) = 0 ∀x 6= c.

We say that a constant random variable has a deterministic or degenerate distribution.

The distribution function of a constant random variable is

FX(x) =
{

0 for x < c

1 for x ≥ c.

Expectation and variance:

E(X) =
∑
xk

xk P(X = xk) = c P(x = c) = c

var(X) = E(X − E(X))2 = E(X2)− (E(X))2 = c2 − (c)2 = 0.

In calculations we use:

E(c) = c – the center of mass of a constant c is c itself;
var(c) = 0 – the width of the graph with only one number c is 0.

5.2 Bernoulli distribution

Suppose we perform a random experiment with two possible outcomes (alternatives). We
assign values 0 (failure) and 1 (success) to these outcomes. We can use for example one toss
with an unbalanced coin. Experiments with repeated tossing a coin are a basic tool for
understanding sequences of random variables (see example below). Similar like Bernoulli we
usually choose X(Heads) = 1 and X(Tails) = 0. We denote the occurrence of Heads as a
success.

Suppose that a success occurs with the probability p.

Definition 5.2. A random variable X has the Bernoulli (alternative) distribution with pa-
rameter p ∈ [0, 1], if it holds that:

P(X = 1) = p, P(X = 0) = 1− p.

Notation: X ∼ Be(p) or X ∼ Bernoulli(p) or X ∼ Alt(p).

2 c© 2011–2023 BIE-PST, WS 2023/24
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Example 5.3 (– toss with a coin).

• Let us choose X(Heads) = 1 and X(Tails) = 0.

• We denote the occurrence of Heads as a success: p = P(Heads).
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Probabilities of values of the Bernoulli distribution with p = 0.3:

Expectation and variance:

E(X) =
∑
xk

xk P(X = xk) = 1 · p+ 0 · (1− p) = p

E(X2) =
∑
xk

x2
k P(X = xk) = 12 · p+ 02 · (1− p) = p

var(X) = E(X2)− E(X)2 = p− p2 = p(1− p).

5.3 Binomial distribution

If we repeat the coin tossing we can be interested in how many times from n tosses we have
obtained Heads:

• Consider n independent experiments with two possible outcomes.

• Again suppose that we succeed in each experiment with probability p.

• The probability that exactly k out of n attempts ended with a success is(
n

k

)
pk(1− p)n−k.

From combinatorics we know that k successes among n attempts can occur in
(n
k

)
different

ways (we are choosing k-tuple of positions where success occur in sequence of the length
n), which have the same probability pk (k successes) times (1 − p)n−k (and the rest (n − k)
failures).

c© 2011–2023 BIE-PST, WS 2023/24 3
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Definition 5.4. A random variable X has the binomial distribution with parameters n ∈ N
and p ∈ [0, 1], if

P(X = k) =
(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Notation: X ∼ Bin(n, p), X ∼ Binom(n, p).

To prove that the binomial distribution is correctly defined, we verify the normalization
condition, i.e., that the sum of all probabilities is equal to 1:

n∑
k=0

P(X = k) = 1.

According to the binomial theorem it holds that

n∑
k=0

P(X = k) =
n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1n = 1.
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Binomial distribution with parameters n = 10 and p = 0.3:

We repeat tossing a coin and we are interested in how many times in n tosses a Heads
occur. A binomial random variable generally counts X = “number of successes” in n identical
and independent repetitions of Bernoulli experiment (with P(success) = p).

E(X) =
n∑
k=0

k P(X = k) =
n∑
k=0

(
n

k

)
k pk(1− p)n−k.

The sum on the right hand side looks, except for a term k pk, like

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1n = 1.

Notice that (pk)′ = k pk−1 and thus p (pk)′ = k pk.

4 c© 2011–2023 BIE-PST, WS 2023/24
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After differentiating both sides with respect to p and multiplying by p we obtain the
needed expression.

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1

/
differentiate w.r.t. p

n∑
k=0

(
n

k

)[
k pk−1(1− p)n−k + pk(1− p)n−k−1

]
= 0

/
split the sum

n∑
k=0

(
n

k

)
kpk−1(1− p)n−k =

n∑
k=0

(
n

k

)
pk(1− p)n−k−1

/
multiply by p

n∑
k=0

(
n

k

)
k pk(1− p)n−k = p

n∑
k=0

(
n

k

)
pk−1(1− p)n−k−1

/
k

(
n

k

)
= n

(
n− 1
k − 1

)

E(X) = np
n∑
k=1

(
n− 1
k − 1

)
pk−1(1− p)n−1−(k−1)

= np · (p+ 1− p)n−1 = np.

Similarly by means of differentiating we calculate E(X2):

E(X2) =
n∑
k=0

(
n

k

)
k2 pk(1− p)n−k = np+ n(n− 1)p2.

From the previous argument we know that
n∑
k=0

(
n

k

)
kxkyn−k = nx(x+ y)n−1,

if we differentiate the equality with respect to x and than multiply by x we get the needed
sum. Thus:

n∑
k=0

(
n

k

)
kxkyn−k = nx(x+ y)n−1

/
differentiate with respect to x

n∑
k=0

(
n

k

)
k2xk−1yn−k = n(x+ y)n−1 + n(n− 1)x(x+ y)n−2

/
multiply by x

n∑
k=0

(
n

k

)
k2xkyn−k = nx(x+ y)n−1 + n(n− 1)x2(x+ y)n−2.

Inserting x = p, y = q = 1− p we have:

EX2 =
n∑
k=0

(
n

k

)
k2 pk(1− p)n−k = pn+ n(n+ 1)p2.

Therefore
var(X) = E(X2)− (E(X))2 = np+ n(n− 1)p2 − n2p2 = np(1− p)

The above mentioned computations directly from definition are quite demanding. Later
after defining independence of random variables we can compute expectation an variance of
binomial distribution easily as expectation and variance of sum of n independent Bernoulli
random variables.

c© 2011–2023 BIE-PST, WS 2023/24 5
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5.3.1 Indicator of an event

A special and important example of a Bernoulli random variable is the indicator of an event.

Definition 5.5. Let A ∈ F be an event. The random variable 1A : Ω→ {0, 1} defined as

1A =
{

1 if A occurs
0 if A does not occur

is called the indicator (or characteristic function) of the event A.

For the indicator of an event A it holds that:

p = P(1A = 1) = P(A),
1− p = P(1A = 0) = P(Ac) = 1− P(A).

Examples 5.6 (– tossing a coin ).

• The Bernoulli random variable X from the previous example (tossing a coin) is nothing
but an indicator of the event {H}. Thus X = 1{H} = 1H.

• The Binomial random variable X corresponding to number of Heads in n tosses can be
expressed as the sum

X =
n∑
i=1

1Hi ,

where 1Hi is the indicator of the event Hi = “Heads appears in the i-th toss”.

Remark: Expressing a binomial variable as a sum of (Bernoulli) indicators often leads to
a significant simplification of calculations.

5.4 Geometric distribution

Another important event is the first occurrence of Heads in a sequence of coin tosses:

• Consider a sequence of independent experiments with two possible outcomes.

• Suppose that each experiment ends with a success with probability p.

• Probability that the first successful attempt the is k-th in the sequence is

(1− p)k−1p.

Definition 5.7. A random variable X has the geometric distribution with parameter p ∈
(0, 1), if

P(X = k) = (1− p)k−1p, k = 1, 2, . . . .

Notation: X ∼ Geom(p).

6 c© 2011–2023 BIE-PST, WS 2023/24
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Again we verify the normalization condition:
∞∑
k=1

P(X = k) =
∞∑
k=1

(1− p)k−1p = p
∞∑
k=0

(1− p)k = p

1− (1− p) = 1.

The distribution function of the geometric distribution can be expressed as

FX(k) = P(X ≤ k) =
k∑
i=1

p(1− p)i−1 = p
k−1∑
i=0

(1− p)i

= p
1− (1− p)k

1− (1− p) = 1− (1− p)k.

For non-integer points x > 0 the value of distribution function is equal to value at point bxc
(the lower integer part of x):

FX(x) = FX(bxc) = 1− (1− p)bxc.

The probability that the success does not occur after k attempts can be computed as

P(X > k) = (1− p)k and thus FX(k) = 1− P(X > k) = 1− (1− p)k.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Geometric distribution with parameter p = 0.3:

E(X) =
∑

all xk

xk P(X = xk) =
∞∑
k=1

k (1− p)k−1p = p
∞∑
k=1

k (1− p)k−1.

The sum on the right-hand side looks as the derivative of −
∑∞
k=0(1− p)k:

EX =
∞∑
k=1

k(1− p)k−1p = −p
( ∞∑
k=1

(1− p)k
)′

= −p
( 1

1− (1− p)

)′
= −p

(−1
p2

)
= 1
p
.

c© 2011–2023 BIE-PST, WS 2023/24 7
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Switching order of sum and derivative is possible only for uniformly convergent series. Which
is fulfilled in our case for all |1− p| < 1.

We can compute E(X2) using the same procedure. From the above we know that

E(X2) =
∞∑
k=1

k2(1− p)k−1p = p
∞∑
k=1

k2(1− p)k−1

= p

( ∞∑
k=1
−k(1− p)k

)′
= p

(
(1− p)

∞∑
k=1
−k(1− p)k−1

)′

= p

(
(1− p)

( ∞∑
k=1

(1− p)k
)′)′

= p

(
(1− p)

(1
p

)′)′

= p

(
p− 1
p2

)′
= p

p2 − (p− 1)2p
p4 = 2− p

p2 .

Thus
var(X) = E(X2)− (E(X)2) = 2− p

p2 −
(1
p

)2
= 1− p

p2 .

5.5 Poisson distribution

The number of random occurrences during a given time is often modeled by the Poisson
distribution:

• For example X = “number of server requests in 15 seconds”.

• Or X = “number of customers in a shop during lunch time”.

• Finite population: n individuals independently decide whether to go to a shop or not.

– Then X is a binomial random variable: X ∼ Binom(n, p).

• Infinite population: we are interested in X ∼ Binom(n, p) for n→∞.

– Useful approximation for great populations (molecules of gas, internet users, etc.).

Example 5.8 (– number of customers in a shop during lunch time).

• number of inhabitants in a city: n;

• number of shops proportional to the number of inhabitants: no = ρn, where ρ is the
density of shops (number of shops per one inhabitant);

• probability that an inhabitant decides to go shopping: z;

• probability that an inhabitant goes to a particular shop: p = z/no = z/(ρn);

• number of inhabitants going to the particular shop: X ∼ Binom(n, p);

• expected value: EX = np = nz/(ρn) = z/ρ . . . constant.

8 c© 2011–2023 BIE-PST, WS 2023/24
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Binomial distribution with n→∞, p→ 0 and np = λ is

P(X = k) = n!
k!(n− k)!

λk

nk

(
1− λ

n

)n−k
.

We rearrange the product and take a limit n→∞

P(X = k) = n

n

(n− 1)
n

· · · (n− k + 1)
n

λk

k!

(
1− λ

n

)n (
1− λ

n

)−k
↓ ↓ ↓ ↓ ↓ ↓

1 1 · · · 1 λk

k! e−λ 1

Finally we have

lim
n→∞

P(X = k) = λk

k! e
−λ.

This distribution is called Poisson. For a sequence of random variables the convergence

P(Xn = x)→ P(X = x), n→∞, ∀x

is called convergence in distribution (according the law) and is denoted by Xn
D→ X. ( L can

be used instead of D) We will define this convergence later.

Definition 5.9. A random variable X has the Poisson distribution with parameter λ > 0 if

P(X = k) = λk

k! e
−λ, k = 0, 1, . . . .

Notation: X ∼ Poisson(λ)

Recalling the important formula:

ex =
∞∑
k=0

xk

k!

we can check that he normalization condition holds:

∞∑
k=0

P(X = k) =
∞∑
k=0

λk

k! e
−λ = e−λ

∞∑
k=0

λk

k! = e−λeλ = 1.

c© 2011–2023 BIE-PST, WS 2023/24 9
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0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

x

P(X = x)

Poisson distribution with parameter λ = 1.8:

The expectation is

E(X) =
∞∑
k=0

k P(X = k) =
∞∑
k=0

k
λk

k! e
−λ

= λ e−λ
∞∑
k=1

λk−1

(k − 1)!

= λ e−λ
∞∑
k=0

λk

k!

= λ e−λeλ = λ.

E(X2) is computed similarly:

E(X2) =
∞∑
k=0

k2λ
k

k! e
−λ = λe−λ

∞∑
k=1

k2 λk−1

k(k − 1)!

= λe−λ
( ∞∑
k=1

(k − 1) λk−1

(k − 1)! +
∞∑
k=1

λk−1

(k − 1)!

)

= λe−λ
( ∞∑
k=0

k
λk

k! +
∞∑
k=0

λk

k!

)
= λe−λ

(
λeλ + eλ

)
= λ2 + λ.

Thus

var(X) = E(X2)− (EX)2 = λ2 + λ− (λ)2 = λ.

10 c© 2011–2023 BIE-PST, WS 2023/24
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6 Important continuous distributions

6.1 Uniform distribution

All values in some interval (a, b) can occur with “equal” probability.

Definition 6.1. A continuous random variable X has the uniform distribution with para-
meters a < b, a, b ∈ R, if its density has the form:

fX(x) =


1

b− a
for x ∈ (a, b),

0 elsewhere.

Notation: X ∼ Unif(a, b), X ∼ U(a, b).

Normalization condition:

+∞∫
−∞

fX(x)dx =
b∫
a

1
b− a

dx = b− a
b− a

= 1.

Distribution function:

FX(x) =
x∫
a

1
b− a

dt =
[

t

b− a

]x
a

= x− a
b− a

for x ∈ [a, b].

x
ba

1
b−a

fX

It is easy to compute that:

E(X) =
b∫
a

x fX(x) dx =
b∫
a

x

b− a
dx = 1

b− a

[
x2

2

]b
a

= a+ b

2 ,

E(X2) =
b∫
a

x2fX(x) dx =
b∫
a

x2

b− a
dx = 1

b− a

[
x3

3

]b
a

= a2 + ab+ b2

3 ,

var(X) = E(X2)− (EX)2 = a2 + ab+ b2

3 − (a+ b)2

4 = (b− a)2

12 .

c© 2011–2023 BIE-PST, WS 2023/24 11
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6.2 Exponential distribution

Very often used in queuing theory and theory of random processes.

Definition 6.2. A random variable X has the exponential distribution with parameter λ > 0,
if its density has the form:

fX(x) =
{
λe−λx for x ∈ [0,+∞),
0 elsewhere.

Notation: X ∼ Exp(λ).

Normalization:
∞∫
−∞

fX(x)dx =
∞∫

0

λe−λxdx =
[
−e−λx

]+∞
0

= 0− (−1) = 1.

Distribution function:

FX(x) =
x∫

0

λe−λtdt =
[
−e−λt

]x
0

= 1− e−λx.

0
x

1

2

1
2

fX fX = λe−λx

λ = 1

λ = 2

λ = 1
2

E(X) =
∞∫

0

x fX(x) dx =
∞∫

0

xλe−λxdx by parts= 1
λ

E(X2) =
∞∫

0

x2 fX(x) dx =
∞∫

0

x2λe−λxdx 2x by parts= 2
λ2

var(X) = E(X2)− (EX)2 = 2
λ2 −

1
λ2 = 1

λ2 .

X Details during tutorials.

12 c© 2011–2023 BIE-PST, WS 2023/24
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6.3 Normal distribution

The normal distribution occurs in nature (population lengths, weights, etc.) and is used as
an approximation for sums and means of random variables.

Definition 6.3. A random variable X has the normal (Gaussian) distribution with parame-
ters µ and σ2 > 0, if the density has the form:

fX(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 for x ∈ (−∞,+∞).

Notation: X ∼ N(µ, σ2).

• Attention: Some literature and software uses X ∼ N(µ, σ).

• We will further use the symbol σ for
√
σ2.

• N(0, 1) is called the standard normal distribution.

Distribution function: cannot be given explicitly, only numerically. The standard normal dis-
tribution function is tabulated and denoted as Φ.

Φ(x) =
x∫

−∞

1√
2π
e−

t2
2 dt.

Standard normal distribution N(0, 1)

−4 −3 −2 −1 0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

x

fX(x)

1√
2π

e−
x2

2

Φ(−x) = 1− Φ(x)

c© 2011–2023 BIE-PST, WS 2023/24 13
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Density of the normal distribution: X ∼ N(µ, σ2)

Μ�3Σ Μ�2Σ Μ�Σ Μ Μ�Σ Μ�2Σ Μ�3Σ

P(µ− σ ≤ X ≤ µ+ σ) ≈ 0.68
P(µ− 2σ ≤ X ≤ µ+ 2σ) ≈ 0.95
P(µ− 3σ ≤ X ≤ µ+ 3σ) ≈ 0.997

Density of the normal distribution: Z ∼ N(0, 1)

�3 �2 �1 0 1 2 3

Density of the normal distribution

N(5,1/4)

N(-1,4)

N(0,1)

�6 �4 �2 2 4 6

0.8

For a normal distribution it is possible to compute the following quantities.

E(X) =
+∞∫
−∞

x
1√

2πσ2
e−

(x−µ)2

2σ2 dx substitution= µ.

var(X) = σ2.

The computation uses substitution and is rather difficult.

14 c© 2011–2023 BIE-PST, WS 2023/24
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6.3.1 Standardization of a random variable

Consider a random variable X with expected value EX = µ and variance varX = σ2.

In the easiest possible way, try to convert the variable X to the variable Z with parameters
EZ = 0 and varZ = 1 (standardization):

• We subtract the expectation µ:

E(X − µ) = EX − µ = 0 and var(X − µ) = varX = σ2.

• We rescale with the value σ =
√

varX:

E
(
X − µ
σ

)
= E(X − µ)

σ
= 0 and var

(
X − µ
σ

)
= var(X − µ)

σ2 = σ2

σ2 = 1.

The required transformation is thus linear and the random variable

Z = X − µ
σ

indeed has a zero mean and a variance of 1.

6.3.2 Standardization of a normal random variable

For practical uses we are interested in the standardization of the normal random variable.

Theorem 6.4. Let a random variable X have the normal distribution X ∼ N(µ, σ2). Then
the random variable

Z = X − µ
σ

has the standard normal distribution, Z ∼ N(0, 1).

Proof.

FZ(z) = P(Z ≤ z) = P
(
X − µ
σ

≤ z
)

= P (X ≤ σz + µ) = FX(σz + µ)

fZ(z) = ∂FZ
∂z

(z) = ∂FX
∂z

(σz + µ) = σ fX(σz + µ)

= σ
1√

2πσ2
e−

(σz+µ−µ)2

2σ2 = 1√
2π
e−

z2
2 .

Remark 6.5. From the previous theorem it follows that:
If X ∼ N(µ, σ2), then Z = X − µ

σ
∼ N(0, 1).

This is used for obtaining the values of the distribution function of the variable X from
the tables of the standard normal distribution Z:

FX(x) = P(X ≤ x) = P
(
X − µ
σ

≤ x− µ
σ

)
= P

(
Z ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)
.

c© 2011–2023 BIE-PST, WS 2023/24 15
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X~N(3,4)X-3~N(0,4)

(X-3)/2 ~ N(0,1)

�6 �4 �2 2 4 6 8
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