BIE-PST - Probability and Statistics

Lecture 7: Random vectors II.

Winter semester 2023/2024

Department of Applied Mathematics Faculty of Information Technology Czech Technical University in Prague
© 2011-2023 Rudolf B. Blažek, Francesco Dolce, Roman Kotecký, Jitka Hrabáková, Petr Novák, Daniel Vašata

Table of contents

7 Random vectors 2
7.1 Functions of random vectors 2
7.2 Covariance and correlation. 3
7.3 Sums of random variables - convolution 6

7 Random vectors

7.1 Functions of random vectors

Similar formulas as for a function of one random variable also hold for the functions of random vectors. Let

$$
Z=h\left(X_{1}, \ldots, X_{n}\right)=h(\boldsymbol{X}) .
$$

- When variables X_{1}, \ldots, X_{n} have a joint discrete distribution with probabilities $\mathrm{P}(\boldsymbol{X}=$ x), the following relation holds for the distribution function of Z :

$$
F_{Z}(z)=\mathrm{P}(Z \leq z)=\sum_{\left\{\boldsymbol{x} \in \mathbb{R}^{n}: h(\boldsymbol{x}) \leq z\right\}} \mathrm{P}(\boldsymbol{X}=\boldsymbol{x}) .
$$

- When variables X_{1}, \ldots, X_{n} have a joint continuous distribution with density $f_{\boldsymbol{X}}(\boldsymbol{x})$, the distribution function of Z is then

$$
F_{Z}(z)=\mathrm{P}(Z \leq z)=\int_{\left\{x \in \mathbb{R}^{n}: h(\boldsymbol{x}) \leq z\right\}} \cdots \int_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
$$

Expected value of the function of a random vector

The expected value $\mathrm{E} h(X, Y)$ of a real function h of random variables X and Y can be computed without determining the distribution of the variable $h(X, Y)$.

- For X and Y discrete random variables it holds that

$$
\mathrm{E} h(X, Y)=\sum_{i, j} h\left(x_{i}, y_{j}\right) \mathrm{P}\left(X=x_{i} \cap Y=y_{j}\right),
$$

if the sum converges absolutely.

- For X and Y continuous random variables it holds that

$$
\mathrm{E} h(X, Y)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x, y) f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

if the integral converges absolutely.
Now we can prove the linearity of the expectation.

Theorem 7.1 (- linearity of expectation). For all $a, b \in \mathbb{R}$ and all random variables X and Y it holds that

$$
\mathrm{E}(a X+b Y)=a \mathrm{E} X+b \mathrm{E} Y .
$$

Consequence:

- $\mathrm{E}(a X+b)=a \mathrm{E} X+b$. This statement was proven before separately.

Proof. From the theory concerning the marginal distributions of discrete random variables X and Y we have:

$$
\begin{aligned}
\mathrm{E}(a X+b Y) & =\sum_{i, j}\left(a x_{i}+b y_{j}\right) \mathrm{P}\left(X=x_{i} \cap Y=y_{j}\right) \\
& =\sum_{i, j} a x_{i} \mathrm{P}\left(X=x_{i} \cap Y=y_{j}\right)+\sum_{i, j} b y_{j} \mathrm{P}\left(X=x_{i} \cap Y=y_{j}\right) \\
& =a \sum_{i} x_{i} \sum_{j} \mathrm{P}\left(X=x_{i} \cap Y=y_{j}\right)+b \sum_{j} y_{j} \sum_{i} \mathrm{P}\left(X=x_{i} \cap Y=y_{j}\right) \\
& =a \sum_{i} x_{i} \mathrm{P}\left(X=x_{i}\right)+b \sum_{j} y_{j} \mathrm{P}\left(Y=y_{j}\right) \quad=a \mathrm{E} X+b \mathrm{E} Y
\end{aligned}
$$

For continuous X and Y the proof is analogous:

$$
\begin{aligned}
\mathrm{E}(a X+b Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(a x+b y) f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a x f_{X, Y}(x, y), \mathrm{d} x \mathrm{~d} y+\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} b y f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y \\
& =a \int_{-\infty}^{\infty} x\left(\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y\right) \mathrm{d} x+b \int_{-\infty}^{\infty} y\left(\int_{-\infty}^{\infty} b f_{X, Y}(x, y) \mathrm{d} x\right) \mathrm{d} y \\
& =a \int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x+b \int_{-\infty}^{\infty} y f_{Y}(y) \mathrm{d} y \\
& =a \mathrm{E} X+b \mathrm{E} Y .
\end{aligned}
$$

7.2 Covariance and correlation

Mutual linear dependence of two random variables X and Y can be described in the following way:

Definition 7.2. Let X and Y be random variables with finite second moments. Then we define the covariance of the random variables X and Y as

$$
\operatorname{cov}(X, Y)=\mathrm{E}[(X-\mathrm{E} X)(Y-\mathrm{E} Y)]
$$

If X and Y have positive variances then we define the correlation coefficient (or coefficient of correlation) as

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var} X} \sqrt{\operatorname{var} Y}}
$$

Definition 7.3. Two random variables X and Y are called non-correlated if $\operatorname{cov}(X, Y)=0$.
Theorem 7.4. For the covariance and the correlation coefficient the following properties hold:
i) $\operatorname{cov}(X, Y)=\mathrm{E} X Y-\mathrm{E} X \mathrm{E} Y$,
ii) X and Y are non-correlated if and only if $\mathrm{E} X Y=\mathrm{E} X \mathrm{E} Y$,
iii) $\rho(X, Y) \in[-1,1]$,
iv) $\rho(a X+b, c Y+d)=\rho(X, Y)$ for all $a, c>0$ and $b, d \in \mathbb{R}$,
v) $\rho(X, Y)= \pm 1$, if $a, b \in \mathbb{R}, a>0$ such that $Y= \pm a X+b$.

Proof.
i) $\operatorname{cov}(X, Y)=\mathrm{E}((X-\mathrm{E} X)(Y-\mathrm{E} Y))=\mathrm{E}(X Y-X \mathrm{E} Y-Y \mathrm{E} X+\mathrm{E} X \mathrm{E} Y)$

$$
\begin{aligned}
& =\mathrm{E} X Y-\mathrm{E}(X \mathrm{E} Y)-\mathrm{E}(Y \mathrm{E} X)+\mathrm{E}(\mathrm{E} X \mathrm{E} Y) \\
& =\mathrm{E} X Y-\mathrm{E} X \mathrm{E} Y-\mathrm{E} Y \mathrm{E} X+\mathrm{E} X \mathrm{E} Y \\
& =\mathrm{E} X Y-\mathrm{E} X \mathrm{E} Y
\end{aligned}
$$

ii) Obvious from above. If $\operatorname{cov}(X, Y)=0$, it means that $\mathrm{E} X Y-\mathrm{E} X \mathrm{E} Y=0$, after manipulation we obtain $\mathrm{E} X Y=\mathrm{E} X \mathrm{E} Y$, which means that the random variables X and Y are non-correlated. Conversely, if X and Y are non-correlated (i.e., $\mathrm{E} X Y=\mathrm{E} X \mathrm{E} Y$), then $\mathrm{E} X Y-\mathrm{E} X \mathrm{E} Y=0$ which means that $\operatorname{cov}(X, Y)=0$.
iii) From the Schwarz inequality (see bibliography).
iv) Follows straightforwardly by inserting into the definition. Firstly we prepare the quantities $\operatorname{cov}(a X+b, c Y+d), \operatorname{var}(a X+b)$ and $\operatorname{var}(c Y+d)$:

$$
\begin{aligned}
\operatorname{cov}(a X+b, c Y+d) & =\mathrm{E}[(a X+b-\mathrm{E}(a X+b))(c Y+d-\mathrm{E}(c Y+d))] \\
& =\mathrm{E}[a(X-\mathrm{E} X) c(Y-\mathrm{E} Y)]=a c \operatorname{cov}(X, Y) \\
\operatorname{var}(a X+b) & =\mathrm{E}(a X+b-\mathrm{E}(a X+b))^{2}=\mathrm{E}(a(X-\mathrm{E} x))^{2}=a^{2} \operatorname{var}(X) \\
\operatorname{var}(c Y+d) & =c^{2} \operatorname{var}(Y)
\end{aligned}
$$

Inserting them to the definition formula we have

$$
\varrho(a X+b, c Y+d)=\frac{\operatorname{cov}(a X+b, c Y+d)}{\sqrt{\operatorname{var}(a X+b)} \sqrt{\operatorname{var}(c Y+d)}}=\frac{a c \operatorname{cov}(X, Y)}{\sqrt{a^{2} \operatorname{var}(X)} \sqrt{c^{2} \operatorname{var}(Y)}}=\varrho(X, Y) .
$$

v) Follows from the proof of the Schwarz inequality (see bibliography).

Let us study the expectation of the product $X Y$ of two random variables X and Y.
Definition 7.5. Alternative definition: Two random variables X and Y are called noncorrelated if

$$
\mathrm{E} X Y=\mathrm{E} X \mathrm{E} Y
$$

Lemma 7.6. If X and Y are independent then they are non-correlated.

Proof. Let X, Y be continuous variables. Independence means that $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$. Thus we have

$$
\begin{aligned}
\mathrm{E} X Y & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f_{X}(x) f_{Y}(y) \mathrm{d} x \mathrm{~d} y \\
& =\left(\int_{-\infty}^{+\infty} x f_{X}(x) \mathrm{d} x\right)\left(\int_{-\infty}^{+\infty} y f_{Y}(y) \mathrm{d} y\right)=\mathrm{E} X \mathrm{E} Y
\end{aligned}
$$

It is now possible to obtain the following properties of the variance of sums of two random variables. We recall two formerly mentioned properties of variance and add a theorem about variance of sum of random variables.

Theorem 7.7. i) For X and Y with finite second moments:

$$
\operatorname{var}(X \pm Y)=\operatorname{var} X+\operatorname{var} Y \pm 2 \operatorname{cov}(X, Y)
$$

ii) For non-correlated (independent) random variables it holds that

$$
\operatorname{var}(X \pm Y)=\operatorname{var} X+\operatorname{var} Y
$$

Proof.
i) Given two random variables X and Y we have:

$$
\begin{aligned}
\operatorname{var}(X \pm Y) & =\mathrm{E}(X \pm Y)^{2}-(\mathrm{E}(X \pm Y))^{2}=\mathrm{E}\left(X^{2} \pm 2 X Y+Y^{2}\right)-(\mathrm{E} X \pm \mathrm{E} Y)^{2} \\
& =\mathrm{E} X^{2} \pm 2 \mathrm{E} X Y+\mathrm{E} Y^{2}-(\mathrm{E} X)^{2} \mp 2 \mathrm{E} X \mathrm{E} Y-(\mathrm{E} Y)^{2} \\
& =\operatorname{var} X+\operatorname{var} Y \pm(2 \mathrm{E} X Y-2 \mathrm{E} X \mathrm{E} Y)=\operatorname{var} X+\operatorname{var} Y \pm 2 \operatorname{cov}(X, Y)
\end{aligned}
$$

ii) For non-correlated (independent) random variables the covariance is zero.

Correlation - sample of 1000 values

7.3 Sums of random variables - convolution

An important case of a function of multiple random variables is their sum

$$
Z=h(\boldsymbol{X})=h\left(X_{1}, \ldots, X_{n}\right)=X_{1}+\cdots+X_{n} .
$$

Consider for simplicity a sum of two random variables:

- If X and Y are discrete and independent, then for $Z=X+Y$ it holds that

$$
\mathrm{P}(Z=z)=\sum_{x} \mathrm{P}(X=x) \cdot \mathrm{P}(Y=z-x) \quad \text { (discrete convolution). }
$$

- If X and Y are continuous and independent, then for $Z=X+Y$ it holds that

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x \quad\left(\text { convolution of } \boldsymbol{f}_{\boldsymbol{X}} \text { and } \boldsymbol{f}_{Y}\right)
$$

The expression for the sum of discrete independent X and Y is obtained easily:

$$
\begin{aligned}
\mathrm{P}(Z=z) & =\mathrm{P}(X+Y=z) \\
& =\sum_{\left\{\left(x_{k}, y_{j}\right): x_{k}+y_{j}=z\right\}} \mathrm{P}\left(X=x_{k} \cap Y=y_{j}\right) \\
& =\sum_{\text {all } x_{k}} \mathrm{P}\left(X=x_{k}\right) \mathrm{P}\left(Y=z-x_{k}\right) .
\end{aligned}
$$

For continuous independent X and Y we have:

$$
\begin{aligned}
F_{Z}(z)=\mathrm{P}(X+Y \leq z) & =\iint_{\{(x, y): x+y \leq z\}} f_{X, Y}(x, y) \mathrm{d}(x, y) \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{z-x} f_{X, Y}(x, y) \mathrm{d} y\right) \mathrm{d} x \\
y=u-x & \int_{-\infty}^{\infty}\left(\int_{-\infty}^{z} f_{X, Y}(x, u-x) \mathrm{d} u\right) \mathrm{d} x \\
& =\int_{-\infty}^{z}\left(\int_{-\infty}^{\infty} f_{X, Y}(x, u-x) \mathrm{d} x\right) \mathrm{d} u \\
& =\int_{-\infty}^{z}\left(\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(u-x) \mathrm{d} x\right) \mathrm{d} u .
\end{aligned}
$$

The density f_{Z} is any non-negative function, for which $F_{Z}(z)=\int_{-\infty}^{z} f_{Z}(u) \mathrm{d} u$.
The expression under the first integral $f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x$ is thus the density of Z.

Example 7.8 (- sum of two normal distributions). Suppose that X and Y are independent, both having the normal distribution $\mathrm{N}(\mu, 1)$. We want to obtain the distribution of $Z=X+Y$.

The densities of X and Y correspond to the normal distribution with variance $\sigma^{2}=1$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2}}, \quad f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-\mu)^{2}}{2}} \quad x, y \in \mathbb{R}
$$

The density of the sum is obtained using convolution:

$$
\begin{aligned}
f_{Z}(z) & =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(z-x-\mu)^{2}}{2}} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} \frac{1}{2 \pi} e^{-\frac{1}{2}\left((x-\mu)^{2}+(z-x-\mu)^{2}\right)} \mathrm{d} x
\end{aligned}
$$

The expressions in the exponent can be rewritten as:

$$
\begin{aligned}
(x-\mu)^{2}+(z-x-\mu)^{2} & =x^{2}-2 \mu x+\mu^{2}+z^{2}+x^{2}+\mu^{2}-2 z x-2 \mu z+2 \mu x \\
& =2\left(x-\frac{z}{2}\right)^{2}+\frac{1}{2}(z-2 \mu)^{2}
\end{aligned}
$$

The expression under the integral can then be split into two multiplicative parts, with one of
them not depending on x and the other one having an integral of 1 :

$$
\begin{aligned}
f_{Z}(z) & =\int_{-\infty}^{\infty} \frac{1}{2 \pi} e^{-\frac{2(x-z / 2)^{2}}{2}} e^{-\frac{(z-2 \mu)^{2}}{2 \cdot 2}} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi 2}} e^{-\frac{(z-2 \mu)^{2}}{2 \cdot 2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi(1 / 2)}} e^{-\frac{(x-z / 2)^{2}}{2 \cdot(1 / 2)}} \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi 2}} e^{-\frac{(z-2 \mu)^{2}}{2 \cdot 2}}
\end{aligned}
$$

The sum $Z=X+Y$ has therefore the normal distribution $\mathrm{N}(2 \mu, 2)$. In general, it can be proven that the sum of n independent normals $\mathrm{N}\left(\mu, \sigma^{2}\right)$ has the distribution $\mathrm{N}\left(n \mu, n \sigma^{2}\right)$.

Example 7.9. Consider two independent random variables X and Y with the Poisson distribution with parameters λ_{1} and λ_{2}, respectively. Find the distribution of the variable $Z=X+Y$.

$$
\mathrm{P}(X=j)=\frac{\lambda_{1}^{j}}{j} e^{-\lambda_{1}} \quad \mathrm{P}(Y=\ell)=\frac{\lambda_{2}^{\ell}}{\ell} e^{-\lambda_{2}}, \quad j, \ell=0,1, \ldots
$$

From what we have seen before we know that for $k=0,1, \ldots$:

$$
\begin{aligned}
\mathrm{P}(Z=k) & =\sum_{\left\{(j, \ell) \in \mathbb{N}_{0}^{2}: j+\ell=k\right\}} \mathrm{P}(X=j) \mathrm{P}(Y=\ell)=\sum_{i=0}^{k} \mathrm{P}(X=j) \mathrm{P}(Y=k-j) \\
& =\sum_{j=0}^{k} \frac{\lambda_{1}^{j}}{j!} e^{-\lambda_{1}} \frac{\lambda_{2}^{k-j}}{(k-j)!} e^{-\lambda_{2}}=e^{-\left(\lambda_{1}+\lambda_{2}\right)} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} \lambda_{1}^{j} \lambda_{2}^{k-j} \\
& =\frac{\left(\lambda_{1}+\lambda_{2}\right)^{k}}{k!} e^{-\left(\lambda_{1}+\lambda_{2}\right)} . \quad \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right) .
\end{aligned}
$$

\checkmark An easier way is to use the moment generating function.
The moment generating function can be used to compute moments of random variables. Taking a sum of independent random variables corresponds to taking a product of their generating functions: For $Z=X+Y$ we have

$$
\begin{aligned}
M_{Z}(s) & =\mathrm{E}\left(e^{s Z}\right)=\mathrm{E}\left(e^{s(X+Y)}\right)=\mathrm{E}\left(e^{s X} e^{s Y}\right) \\
& =\mathrm{E}\left(e^{s X}\right) \mathrm{E}\left(e^{s Y}\right)=M_{X}(s) M_{Y}(s)
\end{aligned}
$$

Generally for a vector of independent random variables X_{1}, \ldots, X_{n} it holds that:

$$
Z=X_{1}+\cdots+X_{n} \Longrightarrow M_{Z}(s)=M_{X_{1}}(s) \cdots M_{X_{n}}(s)
$$

Example 7.10. Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables with parameter p.

Then $M_{X_{i}}(s)=(1-p) e^{0 s}+p e^{1 s}=1-p+p e^{s}, \quad i=1, \ldots, n$.
The random variable $Z=X_{1}+\cdots+X_{n}$ is binomial with parameters n and p.
Its generating function is $M_{Z}(s)=\left(1-p+p e^{s}\right)^{n}$.

Example 7.11. Let X and Y be independent Poisson random variables with parameters λ_{1} and λ_{2} respectively. Let $Z=X+Y$.

Then

$$
M_{Z}(s)=M_{X}(s) M_{Y}(s)=e^{\lambda_{1}\left(e^{s}-1\right)} e^{\lambda_{2}\left(e^{s}-1\right)}=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{s}-1\right)}
$$

Z is again a Poisson random variable, this time with the parameter $\lambda_{1}+\lambda_{2}$:

$$
\mathrm{P}(Z=k)=\frac{\left(\lambda_{1}+\lambda_{2}\right)^{k}}{k!} e^{-\left(\lambda_{1}+\lambda_{2}\right)}
$$

Compare with the difficulty of a direct computation of the convolution.

