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7 RANDOM VECTORS BIE-PST, WS 2023/24, Lecture 7

7 Random vectors

7.1 Functions of random vectors

Similar formulas as for a function of one random variable also hold for the functions of random
vectors. Let

Z =h(X1,...,Xn) = h(X).

e When variables X1,..., X, have a joint discrete distribution with probabilities P(X =
x), the following relation holds for the distribution function of Z:

Fz(2)=P(Z <2) = > P(X = =x).
{xeR™: h(x)<z}

e When variables X7, ..., X,, have a joint continuous distribution with density fx (x), the
distribution function of Z is then

Fu(z) =P(Z < 2) = // fx(@)de, ... dz,.

{xeR™: h(x)<z}

Expected value of the function of a random vector
The expected value Eh(X,Y) of a real function h of random variables X and Y can be
computed without determining the distribution of the variable A(X,Y).

e For X and Y discrete random variables it holds that

EA(X,Y) = hziy) P(X =2;NY =y;),
,J

if the sum converges absolutely.

e For X and Y continuous random variables it holds that

+00 400
BhX.Y) = [ [ hayfry(eydedy,

-0 =00
if the integral converges absolutely.

Now we can prove the linearity of the expectation.

Theorem 7.1 (- linearity of expectation). For all a,b € R and all random variables X and
Y it holds that
E(aX +bY)=aEX +bEY.

Consequence:

e E(aX 4+b) = aE X + b. This statement was proven before separately.
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BIE-PST, WS 2023/24, Lecture 7 7.2 Covariance and correlation

Proof. From the theory concerning the marginal distributions of discrete random variables
X and Y we have:

E(aX +bY) = Z(axi +by)) P(X =2;NY =y;)

—Zaxl —:L‘iﬂY:yj)—i—ZbyjP(X:miﬂY:yj)
2%
—aleZP —xiﬁY:yj)—l—bejZP(X:xiﬂY:yj)
j i
:aZmi +bej Y=y;) = a«EX+DEY.

For continuous X and Y the proof is analogous:

E@X +0Y) = [ [ (ar+by)fuy(o.y) do dy

- / / arfxy(@,y) ,dz dy+ / / byfxy(z,y) de dy

= ( fxy(z,y) dy)dx + b/ (/ bfxy(w,y) dﬂ«")dy

= /foX( dx‘f‘b/yfy

—00

=aEX+VEY.

7.2 Covariance and correlation

Mutual linear dependence of two random variables X and Y can be described in the following
way:

Definition 7.2. Let X and Y be random variables with finite second moments. Then we
define the covariance of the random variables X and Y as

cov(X,Y)=E[(X —EX)(Y —EY)].

If X and Y have positive variances then we define the correlation coefficient (or coefficient of

correlation) as
cov(X,Y)

vvar XvvarY .

Definition 7.3. Two random variables X and Y are called non-correlated if cov(X,Y’) = 0.

p(X, Y) =

Theorem 7.4. For the covariance and the correlation coefficient the following properties
hold:

(© 2011-2023 BIE-PST, WS 2023/24 3



7 RANDOM VECTORS BIE-PST, WS 2023/24, Lecture 7

i) cov(X,Y)=EXY -EXEY,

i) X andY are non-correlated if and only if EXY =EXEY,
i) p(X,Y) € [-1,1],
i) p(aX +b,cY +d) =p(X,Y) for all a,c >0 and b,d € R,

v) p(X,Y) =21, ifa,b € R, a > 0 such that Y = £aX + b.

Proof.

i) i:tov(X,Y) =E(X-EX)(Y-EY)=EXY-XEY-YEX+EXEY)
=EXY-EXEY)-EYEX)+EEXEY)
=EXY-EXEY-EYEX+EXEY
=EXY-EXEY

ii) Obvious from above. If cov(X,Y) = 0, it means that EXY — EXEY = 0, after
manipulation we obtain E XY = EX EY | which means that the random variables X and
Y are non-correlated. Conversely, if X and Y are non-correlated (i.e., EXY =EXEY),
then EXY — EXEY = 0 which means that cov(X,Y) = 0.

iii) From the Schwarz inequality (see bibliography).

iv) Follows straightforwardly by inserting into the definition. Firstly we prepare the quan-
tities cov(aX + b, cY 4 d), var(aX + b) and var(cY + d):

cov(aX +b,cY +d) =E[(aX +b—E(aX +b))(cY +d — E(cY + d))]
=E[a(X —EX)c(Y —EY)] =accov(X,Y),

var(aX +b) = E(aX + b —E(aX +b))? = E(a(X — Ex))? = a® var(X),
var(cY +d) = ¢®var(Y).
Inserting them to the definition formula we have

cov(aX + b,cY +d) accov(X,Y)
X 4+bcY +d) = - — o(X,Y).
ol ¥ +d) Vvar(aX + b)y/var(cY +d) /a2 var(X)\/c2var(Y) ol )

v) Follows from the proof of the Schwarz inequality (see bibliography).

Let us study the expectation of the product XY of two random variables X and Y.

Definition 7.5. Alternative definition: Two random variables X and Y are called non-
correlated if
EXY=EXEY.

Lemma 7.6. If X and Y are independent then they are non-correlated.
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Proof. Let X,Y be continuous variables. Independence means that fxy(z,y) = fx(z)fy ().
Thus we have

400 +00 +00 +00
EXY:/ /:Enyy(:L‘,y) dexdy = / /fﬂny(l‘)fY(y) drdy

+0oo +o00o
- (/ fx(z) dw) ( y v (¥) dy) —EXEY.

It is now possible to obtain the following properties of the variance of sums of two random
variables. We recall two formerly mentioned properties of variance and add a theorem about

O]

variance of sum of random variables.

Theorem 7.7. i) For X and Y with finite second moments:

var(X £Y) =var X +varY £+ 2cov(X,Y).

i1) For non-correlated (independent) random variables it holds that
var(X £Y) =var X + varY.
Proof.
i) Given two random variables X and Y we have:

var(X £ Y)=EX +Y)? - (E(X+Y))?=E(X?+£2XY +Y?) - (EX +EY)?
=EX?4+2EXY +EY? - (EX)?’F2EXEY — (EY)?
=varX +varY £+ EXY —2EXEY) =var X +varY £ 2cov(X,Y).

ii) For non-correlated (independent) random variables the covariance is zero.

Correlation — sample of 1000 values
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7.3 Sums of random variables — convolution

An important case of a function of multiple random variables is their sum
Z=hX)=h(X1,...,Xpn)=X1+ -+ Xp.
Consider for simplicity a sum of two random variables:
e If X and Y are discrete and independent, then for Z = X + Y it holds that

P(Z=2)= ZP(X =uz)-P(Y =z—2x) (discrete convolution).

o If X and Y are continuous and independent, then for Z = X +Y it holds that

fz(z) = / Ix(@)fy(z —x)dx (convolution of fx and fy).

The expression for the sum of discrete independent X and Y is obtained easily:

P(Z=2)=P(X+Y =2
= Y P(X=znY =y;)
{(@k.y;): epty;=2}
= Z P(X =a) P(Y =z — ap).

all zg
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For continuous independent X and Y we have:

Fao)=Px+v <) = [ foreydy
{(z): wt+y<z}
= / / fxy(z,y) dy) dz
y=ae 7 /Z Ifxy(z,u—1) du) dz
= /z fijy(x,u—:n) dx) du
= /Z 7 Ix(z)fy(u—2) d:n) du.

The density fz is any non-negative function, for which Fz(z) = [*_ fz(u)du.
The expression under the first integral fz(z) = [°0 fx(x)fy(z — ) dz is thus the density
of Z.

Example 7.8 (— sum of two normal distributions). Suppose that X and Y are independent,
both having the normal distribution N(u, 1). We want to obtain the distribution of Z = X +Y.
The densities of X and Y correspond to the normal distribution with variance o2 = 1:

1 _@w? 1 _w—w?
2

— R e 2 s e R
me Ty (y) me r,y

The density of the sum is obtained using convolution:

oo

The expressions in the exponent can be rewritten as:

2_a? oux 4yt 4 2 42t 4 p® — 220 — 2uz 4 2ux

z 2 1 2
—2(x—2> +§(z—2u) :

(x—p)+(z— 2 —p)

The expression under the integral can then be split into two multiplicative parts, with one of
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them not depending on = and the other one having an integral of 1:

oo
1 20a—2/2)%  _ (z—2p)?
fz(z) = / —e 2z e zz dzr

1 (z—2)2 1 _(z—2/2)2
= 6_% / — ¢ 2(1/2) dg
2

The sum Z = X + Y has therefore the normal distribution N(2u,2). In general, it can be
proven that the sum of n independent normals N(u, 0%) has the distribution N(nu, no?).

Example 7.9. Consider two independent random variables X and Y with the Poisson
distribution with parameters A\; and Ao, respectively. Find the distribution of the variable
Z=X+Y.

%

)\j
PIX=j) =Tt P ==t =0l

From what we have seen before we know that for £k =0,1,...:

k
P(Z = k) = Y, PX=)PY=0=)PX=j)PY=£k-))
{(5,0)ENZ: j+t=k} =0
k k—j k
R P VD S N YR P W I < S BV OV S
e = .)|e e %l 1k — )1 7172
Pl 5)! Hj=0 T
AL+ AR
_ (1_;!2)6_(>\1+>\2). ~ Poisson(\; + \2).

v An easier way is to use the moment generating function.

The moment generating function can be used to compute moments of random variables.
Taking a sum of independent random variables corresponds to taking a product of their gene-
rating functions: For Z = X + Ywe have

Mz<8) _ E(esZ) _ E(es(X-i-Y)) _ E(esXesY)
= E(eSX) E(eY) = Mx (s)My(s).

Generally for a vector of independent random variables X1, ..., X, it holds that:

Z=X1+--+X, = Mz(S) :MX1(5)~--MXn(S).

Example 7.10. Let X1,...,X,, be independent Bernoulli random variables with parameter
.
Then Mx,(s) = (1 —p)e® +pel* =1 —p+pe’, i=1,...,n

The random variable Z = X1 + - - - + X, is binomial with parameters n and p.
Its generating function is Mz(s) = (1 —p + pe®)".
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Example 7.11. Let X and Y be independent Poisson random variables with parameters \;
and Ao respectively. Let Z =X + Y.
Then
Mz(s) = Mx(s)My(s) = eM(E=Deha(e=1) — ((AitA2)(e* 1)

Z s again a Poisson random variable, this time with the parameter A1 + Ao:

k
Pz = 1) = PRk o),

Compare with the difficulty of a direct computation of the convolution.
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