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7 Random vectors

7.1 Functions of random vectors

Similar formulas as for a function of one random variable also hold for the functions of random
vectors. Let

Z = h(X1, . . . , Xn) = h(X).

• When variables X1, . . . , Xn have a joint discrete distribution with probabilities P(X =
x), the following relation holds for the distribution function of Z:

FZ(z) = P(Z ≤ z) =
∑

{x∈Rn:h(x)≤z}
P(X = x).

• When variables X1, . . . , Xn have a joint continuous distribution with density fX(x), the
distribution function of Z is then

FZ(z) = P(Z ≤ z) =
∫
· · ·
∫

{x∈Rn:h(x)≤z}

fX(x) dx1 . . . dxn.

Expected value of the function of a random vector
The expected value Eh(X,Y ) of a real function h of random variables X and Y can be

computed without determining the distribution of the variable h(X,Y ).

• For X and Y discrete random variables it holds that

Eh(X,Y ) =
∑
i,j

h(xi, yj) P(X = xi ∩ Y = yj),

if the sum converges absolutely.

• For X and Y continuous random variables it holds that

Eh(X,Y ) =
+∞∫
−∞

+∞∫
−∞

h(x, y)fX,Y (x, y) dx dy,

if the integral converges absolutely.

Now we can prove the linearity of the expectation.

Theorem 7.1 (– linearity of expectation). For all a, b ∈ R and all random variables X and
Y it holds that

E(aX + bY ) = aEX + bEY.

Consequence:

• E(aX + b) = aEX + b. This statement was proven before separately.

2 c© 2011–2023 BIE-PST, WS 2023/24



BIE-PST, WS 2023/24, Lecture 7 7.2 Covariance and correlation

Proof. From the theory concerning the marginal distributions of discrete random variables
X and Y we have:

E(aX + bY ) =
∑
i,j

(axi + byj) P(X = xi ∩ Y = yj)

=
∑
i,j

axi P(X = xi ∩ Y = yj) +
∑
i,j

byj P(X = xi ∩ Y = yj)

= a
∑
i

xi
∑
j

P(X = xi ∩ Y = yj) + b
∑
j

yj
∑
i

P(X = xi ∩ Y = yj)

= a
∑
i

xi P(X = xi) + b
∑
j

yj P(Y = yj) = aEX + bEY.

For continuous X and Y the proof is analogous:

E(aX + bY ) =
∞∫
−∞

∞∫
−∞

(ax+ by)fX,Y (x, y) dx dy

=
∞∫
−∞

∞∫
−∞

axfX,Y (x, y) , dx dy +
∞∫
−∞

∞∫
−∞

byfX,Y (x, y) dx dy

= a

∞∫
−∞

x

 ∞∫
−∞

fX,Y (x, y) dy

dx + b

∞∫
−∞

y

 ∞∫
−∞

bfX,Y (x, y) dx

dy

= a

∞∫
−∞

xfX(x) dx+ b

∞∫
−∞

yfY (y) dy

= aEX + bEY.

7.2 Covariance and correlation

Mutual linear dependence of two random variables X and Y can be described in the following
way:

Definition 7.2. Let X and Y be random variables with finite second moments. Then we
define the covariance of the random variables X and Y as

cov(X,Y ) = E[(X − EX)(Y − EY )].

If X and Y have positive variances then we define the correlation coefficient (or coefficient of
correlation) as

ρ(X,Y ) = cov(X,Y )√
varX

√
varY

.

Definition 7.3. Two random variables X and Y are called non-correlated if cov(X,Y ) = 0.

Theorem 7.4. For the covariance and the correlation coefficient the following properties
hold:
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i) cov(X,Y ) = EXY − EX EY ,

ii) X and Y are non-correlated if and only if EXY = EX EY ,

iii) ρ(X,Y ) ∈ [−1, 1],

iv) ρ(aX + b, cY + d) = ρ(X,Y ) for all a, c > 0 and b, d ∈ R,

v) ρ(X,Y ) = ±1, if a, b ∈ R, a > 0 such that Y = ±aX + b.

Proof.
i) cov(X,Y ) = E ((X − EX)(Y − EY )) = E (XY −X EY − Y EX + EX EY )

= EXY − E(X EY )− E(Y EX) + E(EX EY )
= EXY − EX EY − EY EX + EX EY
= EXY − EX EY

ii) Obvious from above. If cov(X,Y ) = 0, it means that EXY − EX EY = 0, after
manipulation we obtain EXY = EX EY , which means that the random variables X and
Y are non-correlated. Conversely, if X and Y are non-correlated (i.e., EXY = EX EY ),
then EXY − EX EY = 0 which means that cov(X,Y ) = 0.

iii) From the Schwarz inequality (see bibliography).

iv) Follows straightforwardly by inserting into the definition. Firstly we prepare the quan-
tities cov(aX + b, cY + d), var(aX + b) and var(cY + d):

cov(aX + b, cY + d) = E[(aX + b− E(aX + b))(cY + d− E(cY + d))]
= E[a(X − EX)c(Y − EY )] = ac cov(X,Y ),

var(aX + b) = E(aX + b− E(aX + b))2 = E(a(X − Ex))2 = a2 var(X),

var(cY + d) = c2 var(Y ).

Inserting them to the definition formula we have

%(aX + b, cY + d) = cov(aX + b, cY + d)√
var(aX + b)

√
var(cY + d)

= ac cov(X,Y )√
a2 var(X)

√
c2 var(Y )

= %(X,Y ).

v) Follows from the proof of the Schwarz inequality (see bibliography).

Let us study the expectation of the product XY of two random variables X and Y .

Definition 7.5. Alternative definition: Two random variables X and Y are called non-
correlated if

EXY = EX EY.

Lemma 7.6. If X and Y are independent then they are non-correlated.
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BIE-PST, WS 2023/24, Lecture 7 7.2 Covariance and correlation

Proof. Let X,Y be continuous variables. Independence means that fX,Y (x, y) = fX(x)fY (y).
Thus we have

EXY =
+∞∫
−∞

+∞∫
−∞

xyfX,Y (x, y) dx dy =
+∞∫
−∞

+∞∫
−∞

xyfX(x)fY (y) dx dy

=

 +∞∫
−∞

xfX(x) dx

 +∞∫
−∞

yfY (y) dy

 = EX EY.

It is now possible to obtain the following properties of the variance of sums of two random
variables. We recall two formerly mentioned properties of variance and add a theorem about
variance of sum of random variables.

Theorem 7.7. i) For X and Y with finite second moments:

var(X ± Y ) = varX + varY ± 2 cov(X,Y ).

ii) For non-correlated (independent) random variables it holds that

var(X ± Y ) = varX + varY.

Proof.

i) Given two random variables X and Y we have:

var(X ± Y ) = E(X ± Y )2 − (E(X ± Y ))2 = E(X2 ± 2XY + Y 2)− (EX ± EY )2

= EX2 ± 2 EXY + EY 2 − (EX)2 ∓ 2 EX EY − (EY )2

= varX + varY ± (2 EXY − 2 EX EY ) = varX + varY ± 2 cov(X,Y ).

ii) For non-correlated (independent) random variables the covariance is zero.

Correlation – sample of 1000 values
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7.3 Sums of random variables – convolution

An important case of a function of multiple random variables is their sum

Z = h(X) = h(X1, . . . , Xn) = X1 + · · ·+Xn.

Consider for simplicity a sum of two random variables:

• If X and Y are discrete and independent, then for Z = X + Y it holds that

P(Z = z) =
∑
x

P(X = x) · P(Y = z − x) (discrete convolution).

• If X and Y are continuous and independent, then for Z = X + Y it holds that

fZ(z) =
∞∫
−∞

fX(x)fY (z − x) dx (convolution of fX and fY ).

The expression for the sum of discrete independent X and Y is obtained easily:

P(Z = z) = P(X + Y = z)
=

∑
{(xk,yj):xk+yj=z}

P(X = xk ∩ Y = yj)

=
∑

all xk

P(X = xk) P(Y = z − xk).
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For continuous independent X and Y we have:

FZ(z) = P(X + Y ≤ z) =
∫∫

{(x,y):x+y≤z}

fX,Y (x, y) d (x, y)

=
∞∫
−∞

 z−x∫
−∞

fX,Y (x, y) dy

dx

y=u−x=
∞∫
−∞

 z∫
−∞

fX,Y (x, u− x) du

dx

=
z∫

−∞

 ∞∫
−∞

fX,Y (x, u− x) dx

du

=
z∫

−∞

 ∞∫
−∞

fX(x)fY (u− x) dx

du.

The density fZ is any non-negative function, for which FZ(z) =
∫ z
−∞ fZ(u) du.

The expression under the first integral fZ(z) =
∫∞
−∞ fX(x)fY (z−x) dx is thus the density

of Z.

Example 7.8 (– sum of two normal distributions). Suppose that X and Y are independent,
both having the normal distribution N(µ, 1). We want to obtain the distribution of Z = X+Y .

The densities of X and Y correspond to the normal distribution with variance σ2 = 1:

fX(x) = 1√
2π
e−

(x−µ)2
2 , fY (y) = 1√

2π
e−

(y−µ)2
2 x, y ∈ R.

The density of the sum is obtained using convolution:

fZ(z) =
∞∫
−∞

fX(x)fY (z − x) dx =
∞∫
−∞

1√
2π
e−

(x−µ)2
2

1√
2π
e−

(z−x−µ)2
2 dx

=
∞∫
−∞

1
2πe

− 1
2 ((x−µ)2+(z−x−µ)2) dx.

The expressions in the exponent can be rewritten as:

(x− µ)2 + (z − x− µ)2 = x2 − 2µx+ µ2 + z2 + x2 + µ2 − 2zx− 2µz + 2µx

= 2
(
x− z

2

)2
+ 1

2 (z − 2µ)2 .

The expression under the integral can then be split into two multiplicative parts, with one of
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them not depending on x and the other one having an integral of 1:

fZ(z) =
∞∫
−∞

1
2πe

− 2(x−z/2)2
2 e−

(z−2µ)2
2·2 dx

= 1√
2π2

e−
(z−2µ)2

2·2

∞∫
−∞

1√
2π(1/2)

e
− (x−z/2)2

2·(1/2) dx

= 1√
2π2

e−
(z−2µ)2

2·2 .

The sum Z = X + Y has therefore the normal distribution N(2µ, 2). In general, it can be
proven that the sum of n independent normals N(µ, σ2) has the distribution N(nµ, nσ2).

Example 7.9. Consider two independent random variables X and Y with the Poisson
distribution with parameters λ1 and λ2, respectively. Find the distribution of the variable
Z = X + Y .

P(X = j) = λj1
j
e−λ1 P(Y = `) = λ`2

`
e−λ2 , j, ` = 0, 1, . . .

From what we have seen before we know that for k = 0, 1, . . . :

P(Z = k) =
∑

{(j,`)∈N2
0: j+`=k}

P(X = j) P(Y = `) =
k∑
i=0

P(X = j) P(Y = k − j)

=
k∑
j=0

λj1
j! e
−λ1 λk−j2

(k − j)!e
−λ2 = e−(λ1+λ2) 1

k!

k∑
j=0

k!
j!(k − j)!λ

j
1λ

k−j
2

= (λ1 + λ2)k

k! e−(λ1+λ2). ∼ Poisson(λ1 + λ2).

X An easier way is to use the moment generating function.
The moment generating function can be used to compute moments of random variables.

Taking a sum of independent random variables corresponds to taking a product of their gene-
rating functions: For Z = X + Y we have

MZ(s) = E(esZ) = E(es(X+Y )) = E(esXesY )
= E(esX) E(esY ) = MX(s)MY (s).

Generally for a vector of independent random variables X1, . . . , Xn it holds that:

Z = X1 + · · ·+Xn =⇒ MZ(s) = MX1(s) · · ·MXn(s).

Example 7.10. Let X1, . . . , Xn be independent Bernoulli random variables with parameter
p.

Then MXi(s) = (1− p)e0s + pe1s = 1− p+ pes, i = 1, . . . , n.

The random variable Z = X1 + · · ·+Xn is binomial with parameters n and p.
Its generating function is MZ(s) =

(
1− p+ pes

)n
.
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Example 7.11. Let X and Y be independent Poisson random variables with parameters λ1
and λ2 respectively. Let Z = X + Y .

Then
MZ(s) = MX(s)MY (s) = eλ1(es−1)eλ2(es−1) = e(λ1+λ2)(es−1).

Z is again a Poisson random variable, this time with the parameter λ1 + λ2:

P(Z = k) = (λ1 + λ2)k

k! e−(λ1+λ2).

Compare with the difficulty of a direct computation of the convolution.
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