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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, functions of random vectors,
independence of random variables, conditional distribution, conditional expected value,
covariance and correlation.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Organization Content

Recap

Based on a random sample of i.i.d. random variables X1, . . . , Xn from a parametric
distribution Fθ we can:

• Estimate the parameters using point estimates – sample mean, sample variance, etc.

• Find confidence intervals – regions, where the parameter lies with a large probability:

P(L < θ < U) = 1− α.

• Test hypotheses – verify whether statements about parameters may or may not be
true, with a given maximal probability of wrongful rejection.
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Linear regression Covariance and correlation

Covariance and correlation

Suppose we want to examine the connection between two variables.

Sometimes we expect that there is a relation, sometimes we can assume there is not.

Examples

• Heights of sons and heights of fathers.

• Bodily weight and height.

• Mean temperature and latitude from city to city.

• Income and the number of years spent studying.

• Number of storks and number of newborns in a city (see literature).

First we model this connection using correlation.
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Linear regression Covariance and correlation

Covariance and correlation

The covariance of two random variables X and Y is defined as

cov(X,Y ) = E ((X − EX)(Y − EY ))

and can be computed as

cov(X,Y ) = E (XY )− EX EY.

The correlation coefficient is defined as

ρX,Y =
cov(X,Y )√
varX

√
varY

and gives a measure of the linear dependence between X and Y .
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Linear regression Covariance and correlation

Covariance and correlation

Theorem

For the correlation coefficient ρX,Y it holds that

1. ρX,Y ∈ [−1, 1].

2. If X and Y are independent, then ρX,Y = 0.

3. If Y = a+ bX for b > 0, then ρX,Y = 1.

4. If Y = a+ bX for b < 0, then ρX,Y = −1.

Proof

See lecture 6.

BIE-PST, WS 2023/24 (FIT CTU) Probability and Statistics Lecture 12 6 / 32



Linear regression Covariance and correlation

Correlation – sample of 1000 values
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Linear regression Covariance and correlation

Covariance and correlation – estimation

Based on a random sample of pairs (X1, Y1), . . . , (Xn, Yn), the covariance can be
estimated using the sample covariance:

sX,Y =
1

n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn).

The correlation coefficient can be estimated using the sample correlation coefficient as

rX,Y =
sX,Y
sXsY

,

where sX =
√
s2X and sY =

√
s2Y are the sample standard deviations of X and Y ,

respectively.
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Linear regression Covariance and correlation

Sample covariance and correlation – properties

The sample covariance can be rewritten as

sX,Y =
1

n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn)

=
1

n− 1

(
n∑
i=1

XiYi − nX̄nȲn

)

=
n

n− 1

(
1

n

n∑
i=1

XiYi − X̄nȲn

)
.

From the law of large numbers it follows that it is a consistent estimator of the covariance.

Because the sample variances are consistent estimators of the real variances, the sample
correlation is therefore a consistent estimator of the correlation coefficient itself.
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)
.

From the law of large numbers it follows that it is a consistent estimator of the covariance.

Because the sample variances are consistent estimators of the real variances, the sample
correlation is therefore a consistent estimator of the correlation coefficient itself.

BIE-PST, WS 2023/24 (FIT CTU) Probability and Statistics Lecture 12 10 / 32



Linear regression Covariance and correlation

Estimating the correlation – example

Example – comparing heights of fathers and sons

Suppose we want to estimate the correlation between the heights of fathers and their sons. We have
observed five pairs of fathers and their sons, now adults. Their heights were measured as follows:

height of father [cm] Xi 172 176 180 184 186

height of son [cm] Yi 178 183 180 188 190

We have computed the following characteristics from the data:

n∑
i=1

Xi = 898,

n∑
i=1

Yi = 919,

n∑
i=1

X2
i = 161412,

n∑
i=1

Y 2
i = 169017,

n∑
i=1

XiYi = 165156.
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Linear regression Covariance and correlation

Estimating the correlation – example
Example – comparing heights of fathers and sons, continued

From the observed characteristics we compute the sample means, variances and the covariance:

X̄n =
1

n

n∑
i=1

Xi =
898

5
= 179.6, Ȳn =

1

n

n∑
i=1

Yi =
919

5
= 183.8,

s2X =
1

n− 1

(
n∑

i=1

X2
i − nX̄2

n

)
=

1

4

(
161412− 5 · 179.62) = 32.8,

s2Y =
1

n− 1

(
n∑

i=1

Y 2
i − nȲ 2

n

)
=

1

4

(
169017− 5 · 183.82) = 26.2,

sX,Y =
1

n− 1

(
n∑

i=1

XiYi − nX̄nȲn

)
=

1

4
(165156− 5 · 179.6 · 183.8) = 25.9.

The sample correlation coefficient is obtained as

rX,Y =
sX,Y√
s2Xs

2
Y

=
25.9√

32.8 · 26.2

.
= 0.883.

We can conclude that there is a positive correlation between the height of sons and their fathers.

The sample correlation coefficient can be computed in R using

cor(height father,height son).
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Linear regression Covariance and correlation
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Linear regression Covariance and correlation
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)
=

1

4
(165156− 5 · 179.6 · 183.8) = 25.9.

The sample correlation coefficient is obtained as

rX,Y =
sX,Y√
s2Xs

2
Y

=
25.9√

32.8 · 26.2

.
= 0.883.

We can conclude that there is a positive correlation between the height of sons and their fathers.

The sample correlation coefficient can be computed in R using

cor(height father,height son).

BIE-PST, WS 2023/24 (FIT CTU) Probability and Statistics Lecture 12 12 / 32



Linear regression Covariance and correlation

Estimating the correlation – example
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Linear regression Covariance and correlation

Testing for zero correlation

We want to be able to determine whether the correlation between the variables is
statistically significant.

Theorem

When observing independent normally distributed pairs, then when ρX,Y = 0, the
statistic

T =
rX,Y√

1− r2X,Y

√
n− 2

has the Student’s t-distribution with n− 2 degrees of freedom.

Proof

See literature.

We can then test the hypothesis H0 : ρX,Y = 0 and reject it in favor of HA : ρX,Y 6= 0

on level of significance α if |T | > tα/2,n−2, i.e., if the standardised sample correlation
coefficient differs significantly from zero.
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Linear regression Covariance and correlation

Testing for zero correlation – example

Example – comparing heights of fathers and sons, continued

Is there a significant correlation between the heights of fathers and their sons? Test on
α = 5%.

We obtain

T =
rX,Y√

1− r2X,Y

√
n− 2

.
=

0.883√
1− 0.8832

√
3
.
= 3.267.

The critical value tα/2,n−2 = t0.025,3 = 3.182, thus

3.267 = |T | > t0.025,3 = 3.182.

We reject the null hypothesis that there is no correlation on level of significance 5%. We say

that there is a statistically significant positive correlation between the heights of fathers and
the heights of their sons.
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Linear regression Covariance and correlation

Testing for zero correlation – example
Example – comparing heights of fathers and sons, continued

We can test the non-correlation in R using cor.test:

> cor.test(height_father,height_son)

Pearson’s product-moment correlation

data: height_father and height_son

t = 3.267, df = 3, p-value = 0.04688

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.00564631 0.99229297

sample estimates:

cor

0.8835115

The p-value is smaller than α = 5%, thus we reject the hypothesis that there is no correlation on level

of significance 5%. Alternatively we can decide based on the t-statistic T = 3.267.

BIE-PST, WS 2023/24 (FIT CTU) Probability and Statistics Lecture 12 16 / 32



Linear regression Regression model

Linear regression

We are often also interested in observing and evaluating the dependence of a random
variable Y on an explanatory variable x, which is not random.

Examples

• The number of cars passing a bridge during various times of the day.

• Body height depending on the age of a person.

• Body weight depending on the height of a person.

• The wind speed depending on the altitude.

Suppose there is a linear dependence of a random variable Y = Y (x) on an explanatory
variable x. We measure n independent observations Yi = Y (xi) at points x1, . . . , xn and
thus we obtain pairs (x1, Y1), . . . , (xn, Yn).

Based on these pairs we want to analyze the linear dependence of Y = Y (x) on x.
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Linear regression Regression model

Regression model
For the description of the linear dependence we can use the linear regression model

Yi = α+ βxi + εi i = 1, . . . , n,

where:

• xi are given values – not all equal,

• εi are i.i.d. zero mean random variables (experimental errors, often N(0, σ2)),

• α and β are unknown parameters.

It follows that:
EYi = α+ βxi, varYi = var εi = σ2.

We want to find estimators a and b of the parameters α and β such that the values

Ŷi = a+ bxi

are the best approximations of Yi.
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Linear regression Regression model

Least squares method

Parameters α and β are estimated using the least squares method.

Good estimators a and b are such values which minimize the residual sum of squares Se:

Se =

n∑
i=1

e2i =

n∑
i=1

(Yi − Ŷi)2 =

n∑
i=1

(Yi − (a+ bxi))
2.

e1
e2

e3

e4

e5 e6Residuals ei

The estimated regression line a+ bx has the minimal sum of the second powers (squares)
of the vertical distance from the measured values.
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Linear regression Regression model

Estimating parameters of the regression line

Theorem

Point estimators of the regression parameters obtained by the least squares method are

b =

∑n
i=1(xi − x̄n)(Yi − Ȳn)∑n

i=1(xi − x̄n)2
and a = Ȳn − b x̄n,

where x̄n = 1
n

∑n
i=1 xi and Ȳn = 1

n

∑n
i=1 Yi.

An unbiased estimator of the variance varYi = σ2 is

s2 =
1

n− 2

n∑
i=1

(Yi − a− bxi)2 =
1

n− 2
Se

and is called the residual variance.
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Linear regression Regression model

Estimating parameters of the regression line

Proof

We proceed for concrete observations y1, . . . , yn:
By differentiating Se with respect to a and b we find the minimum:

∂Se

∂a
= 0,

∂Se

∂b
= 0.

− 2
n∑

i=1

(yi − a− b · xi) = 0

→ a = ȳn − b x̄n

−2

n∑
i=1

(yi − a− bxi)xi = 0

0 =
n∑

i=1

xiyi − ȳn

n∑
i=1

xi − b
n∑

i=1

x2
i + b x̄n

n∑
i=1

xi

b =

∑n
i=1 xiyi − nȳnx̄n∑n

i=1 x
2
i − nx̄2

n

=

∑n
i=1(yi − ȳn)(xi − x̄n)∑n

i=1(xi − x̄n)2

By computing the matrix of second derivatives and showing that it is positive definite it can be proven that this
point is indeed the minimum. For the proof of the unbiasedness of the estimator of the variance see literature.
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Linear regression Regression model

Estimating parameters of the regression line
X It can be shown that the above mentioned estimators are the best unbiased estimators
of the regression parameters.

If we treated the explanatory variables as random, X1, . . . , Xn, the estimator of the
regression parameter β can be given by means of estimators of variances and the
covariance:

b =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)∑n

i=1(Xi − X̄n)2
=
sX,Y
s2X

= rX,Y
sY
sX

,

where sX,Y is the sample covariance and rX,Y is the sample correlation coefficient

sX,Y =
1

n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn), rX,Y =
sX,Y
sXsY

and sX and sY are the sample standard deviations – square roots of sample variances

s2X =
1

n− 1

n∑
i=1

(Xi − X̄n)2, s2Y =
1

n− 1

n∑
i=1

(Yi − Ȳn)2.
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Linear regression Regression model

Linear regression – example
Example – dependence of the heights of sons on the heights of their fathers

Suppose we want to model the linear dependence of the heights of sons on the heights of their fathers
from the previous example. Their height was measured as follows:

height of father [cm] xi 172 176 180 184 186

height of son [cm] Yi 178 183 180 188 190

We find the sample variance and covariance as follows:

s2X =
1

n− 1

n∑
i=1

(Xi − X̄n)2 = 32.8, sX,Y =
1

n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn) = 25.9.

The parameters of the regression line are then estimated as

b =
sX,Y

s2X
=

25.9

32.8

.
= 0.79

a = Ȳn − b · X̄n
.
= 183.8− 25.9

32.8
· 179.6

.
= 41.98.

For every centimeter of difference between the fathers’ height, we expect an average difference of
0.79 centimeters between their sons.

The estimates can be called in R using lm(height son height father).
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Linear regression Regression model

Linear regression – example
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Linear regression Regression model

Precision of the regression model

For evaluating the precision of a linear model we can use the coefficient of determination
R2:

R2 = 1− Se
ST

,

where Se is the residual sum of squares and ST = (n− 1)s2Y :

ST =
n∑
i=1

(Yi − Ȳn)2.

The closer R2 is to 1 the better the linear model fits the data. More precisely, it can be
compared with the critical values of its proper distribution – see literature.

R2 can be interpreted as the proportion of variability in the data which is explained by the
regression model.
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regression model.
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Linear regression Regression model

Testing linear independence
Often we want to test the hypothesis

H0 : β = 0 versus HA : β 6= 0.

Which equivalently means testing

H0 : Yi = α+ εi versus HA : Yi = α+ βxi + εi.

In fact we test whether Y actually does linearly depend on x or not. Testing can be based
on the two-sided confidence interval for β. When the random errors εi are normally
distributed, then the corresponding confidence interval can be found as:(

b− tα/2,n−2

√
s2√

(n− 1)s2X
, b+ tα/2,n−2

√
s2√

(n− 1)s2X

)
,

where s2 is the residual variance from the last theorem and tα/2,n−2 is the critical value
of the Student’s t-distribution with n− 2 degrees of freedom.

We can then check whether 0 lies in the interval or not. Alternatively we can decide based
on the p-value of the test.
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Linear regression Regression model

Testing linear independence – example
Example – heights of fathers and sons, continued

We want to test whether the heights of sons depend significantly on the heights of their fathers. In R
we can call the properties of a fitted linear model using summary(lm()):
> summary(lm(height_son~height_father))

Call:

lm(formula = height_son ~ height_father)

Residuals:

1 2 3 4 5

0.2012 2.0427 -4.1159 0.7256 1.1463

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.9817 43.4272 0.967 0.4050

height_father 0.7896 0.2417 3.267 0.0469 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.769 on 3 degrees of freedom

Multiple R-squared: 0.7806, Adjusted R-squared: 0.7075

F-statistic: 10.67 on 1 and 3 DF, p-value: 0.04688

The p-value corresponding to H0 : β = 0 is 0.0469 and is smaller than α = 5%. On level of

significance 5% we can thus reject the hypothesis that there is no dependence.
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Linear regression Regression model

Prediction intervals
Suppose that we have estimated the parameters of the regression model from obtained
data. For a new value x for which we do not know the value Y we may be interested in
a prediction of Y and the confidence interval for the prediction.

Prediction Ŷ :
Ŷ = a+ b · x.

(1− α)100% confidence interval for the prediction

a+ b · x± tα/2,n−2

√
s2

√
1

n
+

(x− x̄n)2∑n
i=1(xi − x̄n)2

.

If we plot the regression line and the boundaries of the confidence interval of the prediction
as a function of x, we obtain the pointwise confidence intervals.

We can also construct a band in which the regression line lies with a probability 1− α.
Such band is called the confidence band for the whole regression line. The
corresponding expression is based on the Fisher’s F-distribution (see literature), with

tα/2,n−2 replaced with
√

2Fα/2,2,n−2.
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Regression prediction – example

Example – dependence of the heights of sons on the heights of their fathers

Suppose we want to estimate the expected height of a son whose father is 175 centimeters
tall.

For given x = 175 cm, we want to predict Ŷ :

Ŷ = a+ b · x
.
= 41.98 + 0.79 · 175
.
= 180.2 cm.

The 95% confidence interval for the prediction is then

(174.9, 185.5).
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Ŷ = a+ b · x
.
= 41.98 + 0.79 · 175
.
= 180.2 cm.

The 95% confidence interval for the prediction is then

(174.9, 185.5).

BIE-PST, WS 2023/24 (FIT CTU) Probability and Statistics Lecture 12 29 / 32



Linear regression Regression model

Regression prediction – example

Example – dependence of the heights of sons on the heights of their fathers

Suppose we want to estimate the expected height of a son whose father is 175 centimeters
tall.

For given x = 175 cm, we want to predict Ŷ :
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Example – concentration of lactic acid

It was studied how much lactic acid there is in 100 ml of new mothers’ blood (values xi) and
their newborn children (values Yi) directly after birth.

xi 40 64 34 15 57 45
Yi 33 46 23 12 56 40

We consider a linear dependence between the concentration in mothers’ and their
children’s blood.

The estimates of the regression parameters are:

b =

∑6
i=1(xi − x̄n)(Yi − Ȳn)∑6

i=1(xi − x̄n)2
= 0.8543

a = Ȳn − bx̄n = −1.3082

Let us test the hypothesis that the concentration in mother’s blood does not influence the
concentration in their children’s blood: H0 : β = 0 versus HA : β 6= 0

The 95% confidence interval for β is

0 /∈

(0.404, 1.305).

This means that we reject the null hypothesis. The dependence is thus significant.
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Example – concentration of lactic acid, continued

Let us plot the measured data, the estimated regression line and corresponding confidence
bands:
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Example – concentration of lactic acid, continued
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Example – concentration of lactic acid, continued
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confidence band for the whole regression line
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Recap
The correlation coefficient gives a measure of linear dependence between two random variables
and is defined as

ρX,Y =
cov(X,Y )√
varX

√
varY

.

It can be estimated using the sample correlation coefficient as

rX,Y =
sX,Y

sX · sY
,

where sX,Y is the sample covariance.

If we want to model the dependence of Y on x taken as fixed, we can use linear regression. We
assume that there is a linear dependence of the form

Yi = α+ βxi + εi,

where εi are independent zero-mean random errors and α and β are parameters which we want to
estimate.

Given observed data, we obtain the estimators a and b of the parameters using the least squares
method as:

b =

∑n
i=1 xiyi − nx̄nȳn∑n

i=1 x
2
i − nx̄2n

=
sX,Y

s2X
= rX,Y

sY
sX

,

a = ȳn − b · x̄n.
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