Random variables III.

(Important discrete and continuous distributions)

Lecturer:
Francesco Dolce

Department of Applied Mathematics
Faculty of Information Technology
Czech Technical University in Prague
(C) 2011-2023 Rudolf B. Blažek, Francesco Dolce, Roman Kotecký, Jitka Hrabáková, Petr Novák, Daniel Vašata

Probability and Statistics
 BIE-PST, WS 2023/24, Lecture 5

Content

- Probability theory:
- Events, probability, conditional probability, Bayes' Theorem, independence of events.
- Random variables, distribution function, functions of random variables, characteristics of random variables: expected value, variance, moments, generating function, quantiles, critical values, important discrete and continuous distributions, covariance and correlation.
- Random vectors, joint and marginal distributions, functions of random vectors, independence of random variables, conditional distribution, conditional expected value.
- Markov's and Chebyshev's inequality, weak law of large numbers, strong law of large numbers, Central limit theorem.

- Mathematical statistics:

- Point estimators, sample mean, sample variance, properties of point estimators, Maximum likelihood method.
- Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear regression, estimators of regression parameters, testing of linear model.

Recap

- A random variable X is a measurable function which assigns real values to the outcomes of a random experiment.
- The distribution of X gives the information of the probabilities of its values and is uniquely given by the distribution function:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

- There are two major types of random variables:
- Discrete, taking only countably many possible values.
- Continuous, taking values from an interval.
- The distribution can be given by:
- for discrete distributions by the probabilities of possible values $\mathrm{P}\left(X=x_{k}\right)$.
- for continuous distributions by the density f_{X} for which

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t
$$

Constant random variable

A constant random variable describes a non-random situation when we have only one possible result occurring with probability of 1 .

Constant random variable

A constant random variable describes a non-random situation when we have only one possible result occurring with probability of 1 .

Definition

A random variable X is called constant, if for some $c \in \mathbb{R}$ it holds that:

$$
X(\omega)=c \text { for all } \omega \in \Omega
$$

In other words it holds that:

$$
\mathrm{P}(X=c)=1, \quad \mathrm{P}(X=x)=0 \quad \forall x \neq c
$$

Constant random variable

A constant random variable describes a non-random situation when we have only one possible result occurring with probability of 1 .

Definition

A random variable X is called constant, if for some $c \in \mathbb{R}$ it holds that:

$$
X(\omega)=c \text { for all } \omega \in \Omega
$$

In other words it holds that:

$$
\mathrm{P}(X=c)=1, \quad \mathrm{P}(X=x)=0 \quad \forall x \neq c
$$

We say that a constant random variable has a deterministic or degenerate distribution.

Constant random variable

A constant random variable describes a non-random situation when we have only one possible result occurring with probability of 1 .

Definition

A random variable X is called constant, if for some $c \in \mathbb{R}$ it holds that:

$$
X(\omega)=c \text { for all } \omega \in \Omega
$$

In other words it holds that:

$$
\mathrm{P}(X=c)=1, \quad \mathrm{P}(X=x)=0 \quad \forall x \neq c
$$

We say that a constant random variable has a deterministic or degenerate distribution.
The distribution function of a constant random variable is

$$
F_{X}(x)= \begin{cases}0 & \text { for } x<c \\ 1 & \text { for } x \geq c\end{cases}
$$

Constant random variable - expectation, variance

$$
\mathrm{P}(X=c)=1, \quad \mathrm{P}(X=x)=0 \quad \forall x \neq c
$$

Constant random variable - expectation, variance

$$
\mathrm{P}(X=c)=1, \quad \mathrm{P}(X=x)=0 \quad \forall x \neq c
$$

Expectation and variance:

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{x_{k}} x_{k} \mathrm{P}\left(X=x_{k}\right)=c \mathrm{P}(x=c)=c \\
\operatorname{var}(X) & =\mathrm{E}(X-\mathrm{E}(X))^{2}=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=c^{2}-(c)^{2}=0
\end{aligned}
$$

In calculations we use:

$$
\left.\begin{array}{rl}
\mathrm{E}(c) & =c \\
\operatorname{var}(c) & =0
\end{array} \quad \text { - the center of mass of a constant } c \text { is } c \text { itself; }\right] \text { width of the graph with only one number } c \text { is } 0 .
$$

Bernoulli (Alternative) distribution

Suppose we perform a random experiment with two possible outcomes (alternatives). We assign values 0 (failure) and 1 (success) to these outcomes. We can use for example one toss with an unbalanced coin.

Suppose that a success occurs with the probability p.

Bernoulli (Alternative) distribution

Suppose we perform a random experiment with two possible outcomes (alternatives). We assign values 0 (failure) and 1 (success) to these outcomes. We can use for example one toss with an unbalanced coin.

Suppose that a success occurs with the probability p.

Definition

A random variable X has the Bernoulli (alternative) distribution with parameter $p \in[0,1]$, if it holds that:

$$
\mathrm{P}(X=1)=p, \quad \mathrm{P}(X=0)=1-p .
$$

Notation: $X \sim \operatorname{Be}(p)$ or $X \sim \operatorname{Bernoulli}(p)$ or $X \sim \operatorname{Alt}(p)$.

Bernoulli (Alternative) distribution

Suppose we perform a random experiment with two possible outcomes (alternatives). We assign values 0 (failure) and 1 (success) to these outcomes. We can use for example one toss with an unbalanced coin.

Suppose that a success occurs with the probability p.

Definition

A random variable X has the Bernoulli (alternative) distribution with parameter $p \in[0,1]$, if it holds that:

$$
\mathrm{P}(X=1)=p, \quad \mathrm{P}(X=0)=1-p .
$$

Notation: $X \sim \operatorname{Be}(p)$ or $X \sim \operatorname{Bernoulli}(p)$ or $X \sim \operatorname{Alt}(p)$.

Example - toss with a coin

- Let us choose X (Heads) $=1$ and X (Tails) $=0$.
- We denote the occurrence of Heads as a success: $p=\mathrm{P}$ (Heads).

Bernoulli distribution - graph of probabilities

Probabilities of values of the Bernoulli distribution with $p=0.3$:

Bernoulli distribution - expectation, variance

Bernoulli random variable:

$$
\begin{aligned}
& \mathrm{P}(X=1)=p \in[0,1] \\
& \mathrm{P}(X=0)=1-p
\end{aligned}
$$

(Heads, success)
(Tails, failure).

Bernoulli distribution - expectation, variance

Bernoulli random variable:

$$
\begin{aligned}
& \mathrm{P}(X=1)=p \in[0,1] \\
& \mathrm{P}(X=0)=1-p
\end{aligned}
$$

(Heads, success)
(Tails, failure).

Expectation and variance:

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{x_{k}} x_{k} \mathrm{P}\left(X=x_{k}\right)=1 \cdot p+0 \cdot(1-p)=p \\
\mathrm{E}\left(X^{2}\right) & =\sum_{x_{k}} x_{k}^{2} \mathrm{P}\left(X=x_{k}\right)=1^{2} \cdot p+0^{2} \cdot(1-p)=p \\
\operatorname{var}(X) & =\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}=p-p^{2}=p(1-p)
\end{aligned}
$$

Binomial distribution

If we repeat the coin tossing we can be interested in how many times from n tosses we have obtained Heads:

- Consider n independent experiments with two possible outcomes.
- Again suppose that we succeed in each experiment with probability p.
- The probability that exactly k out of n attempts ended with a success is

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Binomial distribution

If we repeat the coin tossing we can be interested in how many times from n tosses we have obtained Heads:

- Consider n independent experiments with two possible outcomes.
- Again suppose that we succeed in each experiment with probability p.
- The probability that exactly k out of n attempts ended with a success is

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Definition

A random variable X has the binomial distribution with parameters $n \in \mathbb{N}$ and $p \in[0,1]$, if

$$
\mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

Notation: $X \sim \operatorname{Bin}(n, p), X \sim \operatorname{Binom}(n, p)$.

Binomial distribution - normalization

To prove that the binomial distribution is correctly defined, we verify the normalization condition, i.e., that the sum of all probabilities is equal to 1 :

$$
\sum_{k=0}^{n} \mathrm{P}(X=k)=1
$$

Binomial distribution - normalization

To prove that the binomial distribution is correctly defined, we verify the normalization condition, i.e., that the sum of all probabilities is equal to 1 :

$$
\sum_{k=0}^{n} \mathrm{P}(X=k)=1
$$

According to the binomial theorem it holds that

$$
\sum_{k=0}^{n} \mathrm{P}(X=k)=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1^{n}=1
$$

Binomial distribution - graph of probabilities

Binomial distribution with parameters $n=10$ and $p=0.3$:

Binomial distribution - expectation

Binomial random variable $X \sim \operatorname{Binom}(n, p)$:

$$
\begin{aligned}
& \mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n . \\
& \mathrm{E}(X)=\sum_{k=0}^{n} k \mathrm{P}(X=k)=\sum_{k=0}^{n}\binom{n}{k} k p^{k}(1-p)^{n-k} .
\end{aligned}
$$

Binomial distribution - expectation

Binomial random variable $X \sim \operatorname{Binom}(n, p)$:

$$
\begin{aligned}
& \mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n \\
& \mathrm{E}(X)=\sum_{k=0}^{n} k \mathrm{P}(X=k)=\sum_{k=0}^{n}\binom{n}{k} k p^{k}(1-p)^{n-k} .
\end{aligned}
$$

The sum on the right hand side looks, except for a term $k p^{k}$, like

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1^{n}=1
$$

Notice that $\left(p^{k}\right)^{\prime}=k p^{k-1}$ and thus $\quad p\left(p^{k}\right)^{\prime}=k p^{k}$.

Binomial distribution - expectation

Binomial random variable $X \sim \operatorname{Binom}(n, p)$:

$$
\begin{aligned}
& \mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n \\
& \mathrm{E}(X)=\sum_{k=0}^{n} k \mathrm{P}(X=k)=\sum_{k=0}^{n}\binom{n}{k} k p^{k}(1-p)^{n-k} .
\end{aligned}
$$

The sum on the right hand side looks, except for a term $k p^{k}$, like

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1^{n}=1
$$

Notice that $\left(p^{k}\right)^{\prime}=k p^{k-1}$ and thus $\quad p\left(p^{k}\right)^{\prime}=k p^{k}$.
After differentiating both sides with respect to p and multiplying by p we obtain the needed expression.

Binomial distribution - expectation

$$
\begin{gathered}
\qquad \sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=1 \quad \text { /differentiate w.r.t. } p \\
\sum_{k=0}^{n}\binom{n}{k}\left[k p^{k-1}(1-p)^{n-k}+p^{k}(1-p)^{n-k-1}\right]=0 \quad / \text { split the sum } \\
\sum_{k=0}^{n}\binom{n}{k} k p^{k-1}(1-p)^{n-k}=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k-1} \\
\hline \sum_{k=0}^{n}\binom{n}{k} k p^{k}(1-p)^{n-k}=p \sum_{k=0}^{n}\binom{n}{k} p^{k-1}(1-p)^{n-k-1} \\
\hline \quad / k\binom{n}{k}=n\binom{n-1}{k-1} \\
E(X)=n p \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1}(1-p)^{n-1-(k-1)} \\
=n p \cdot(p+1-p)^{n-1}=n p .
\end{gathered}
$$

Binomial distribution - variance

Similarly by means of differentiating we calculate $\mathrm{E}\left(X^{2}\right)$:

$$
\mathrm{E}\left(X^{2}\right)=\sum_{k=0}^{n}\binom{n}{k} k^{2} p^{k}(1-p)^{n-k}=n p+n(n-1) p^{2}
$$

Binomial distribution - variance

Similarly by means of differentiating we calculate $\mathrm{E}\left(X^{2}\right)$:

$$
\mathrm{E}\left(X^{2}\right)=\sum_{k=0}^{n}\binom{n}{k} k^{2} p^{k}(1-p)^{n-k}=n p+n(n-1) p^{2}
$$

Therefore

$$
\operatorname{var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=n p+n(n-1) p^{2}-n^{2} p^{2}=n p(1-p)
$$

Detailed computation of $\mathrm{E}\left(X^{2}\right)$ can be found in the lecture handout.

Indicator of an event

A special and important example of a Bernoulli random variable is the indicator of an event.

Indicator of an event

A special and important example of a Bernoulli random variable is the indicator of an event.

Definition

Let $A \in \mathcal{F}$ be an event. The random variable $\mathbb{1}_{A}: \Omega \rightarrow\{0,1\}$ defined as

$$
\mathbb{1}_{A}= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { if } A \text { does not occur }\end{cases}
$$

is called the indicator (or characteristic function) of the event A.

Indicator of an event

A special and important example of a Bernoulli random variable is the indicator of an event.

Definition

Let $A \in \mathcal{F}$ be an event. The random variable $\mathbb{1}_{A}: \Omega \rightarrow\{0,1\}$ defined as

$$
\mathbb{1}_{A}= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { if } A \text { does not occur }\end{cases}
$$

is called the indicator (or characteristic function) of the event A.

For the indicator of an event A it holds that:

$$
\begin{aligned}
p & =\mathrm{P}\left(\mathbb{1}_{A}=1\right)=\mathrm{P}(A) \\
1-p & =\mathrm{P}\left(\mathbb{1}_{A}=0\right)=\mathrm{P}\left(A^{c}\right)=1-\mathrm{P}(A)
\end{aligned}
$$

Indicator of event - examples

Examples - tossing a coin

- The Bernoulli random variable X from the previous example (tossing a coin) is nothing but an indicator of the event $\{\mathrm{H}\}$. Thus $X=\mathbb{1}_{\{\mathrm{H}\}}=\mathbb{1}_{\mathrm{H}}$.
- The Binomial random variable X corresponding to number of Heads in n tosses can be expressed as the sum

$$
X=\sum_{i=1}^{n} \mathbb{1}_{\mathrm{H}_{i}}
$$

where $\mathbb{1}_{\mathrm{H}_{i}}$ is the indicator of the event $\mathrm{H}_{i}=$ "Heads appears in the i-th toss".

Indicator of event - examples

Examples - tossing a coin

- The Bernoulli random variable X from the previous example (tossing a coin) is nothing but an indicator of the event $\{\mathrm{H}\}$. Thus $X=\mathbb{1}_{\{\mathrm{H}\}}=\mathbb{1}_{\mathrm{H}}$.
- The Binomial random variable X corresponding to number of Heads in n tosses can be expressed as the sum

$$
X=\sum_{i=1}^{n} \mathbb{1}_{\mathrm{H}_{i}}
$$

where $\mathbb{1}_{\mathrm{H}_{i}}$ is the indicator of the event $\mathrm{H}_{i}=$ "Heads appears in the i-th toss".

Remark:
Expressing a binomial variable as a sum of (Bernoulli) indicators often leads to a significant simplification of calculations.

Geometric distribution

Another important event is the first occurrence of Heads in a sequence of coin tosses:

- Consider a sequence of independent experiments with two possible outcomes.
- Suppose that each experiment ends with a success with probability p.
- Probability that the first successful attempt the is k-th in the sequence is

$$
(1-p)^{k-1} p
$$

Geometric distribution

Another important event is the first occurrence of Heads in a sequence of coin tosses:

- Consider a sequence of independent experiments with two possible outcomes.
- Suppose that each experiment ends with a success with probability p.
- Probability that the first successful attempt the is k-th in the sequence is

$$
(1-p)^{k-1} p
$$

Definition

A random variable X has the geometric distribution with parameter $p \in(0,1)$, if

$$
\mathrm{P}(X=k)=(1-p)^{k-1} p, \quad k=1,2, \ldots
$$

Notation: $X \sim \operatorname{Geom}(p)$.

Geometric distribution

Another important event is the first occurrence of Heads in a sequence of coin tosses:

- Consider a sequence of independent experiments with two possible outcomes.
- Suppose that each experiment ends with a success with probability p.
- Probability that the first successful attempt the is k-th in the sequence is

$$
(1-p)^{k-1} p
$$

Definition

A random variable X has the geometric distribution with parameter $p \in(0,1)$, if

$$
\mathrm{P}(X=k)=(1-p)^{k-1} p, \quad k=1,2, \ldots
$$

Notation: $X \sim \operatorname{Geom}(p)$.

Again we verify the normalization condition:

$$
\sum_{k=1}^{\infty} \mathrm{P}(X=k)=\sum_{k=1}^{\infty}(1-p)^{k-1} p=p \sum_{k=0}^{\infty}(1-p)^{k}=\frac{p}{1-(1-p)}=1
$$

Geometric distribution - distribution function

The distribution function of the geometric distribution can be expressed as

$$
\begin{aligned}
F_{X}(k)=\mathrm{P}(X \leq k) & =\sum_{i=1}^{k} p(1-p)^{i-1}=p \sum_{i=0}^{k-1}(1-p)^{i} \\
& =p \frac{1-(1-p)^{k}}{1-(1-p)}=1-(1-p)^{k}
\end{aligned}
$$

Geometric distribution - distribution function

The distribution function of the geometric distribution can be expressed as

$$
\begin{aligned}
F_{X}(k)=\mathrm{P}(X \leq k) & =\sum_{i=1}^{k} p(1-p)^{i-1}=p \sum_{i=0}^{k-1}(1-p)^{i} \\
& =p \frac{1-(1-p)^{k}}{1-(1-p)}=1-(1-p)^{k}
\end{aligned}
$$

For non-integer points $x>0$ the value of distribution function is equal to value at point $\lfloor x\rfloor$ (the lower integer part of x):

$$
F_{X}(x)=F_{X}(\lfloor x\rfloor)=1-(1-p)^{\lfloor x\rfloor}
$$

Geometric distribution - distribution function

The distribution function of the geometric distribution can be expressed as

$$
\begin{aligned}
F_{X}(k)=\mathrm{P}(X \leq k) & =\sum_{i=1}^{k} p(1-p)^{i-1}=p \sum_{i=0}^{k-1}(1-p)^{i} \\
& =p \frac{1-(1-p)^{k}}{1-(1-p)}=1-(1-p)^{k}
\end{aligned}
$$

For non-integer points $x>0$ the value of distribution function is equal to value at point $\lfloor x\rfloor$ (the lower integer part of x):

$$
F_{X}(x)=F_{X}(\lfloor x\rfloor)=1-(1-p)^{\lfloor x\rfloor}
$$

The probability that the success does not occur after k attempts can be computed as

$$
\mathrm{P}(X>k)=(1-p)^{k} \quad \text { and thus } \quad F_{X}(k)=1-\mathrm{P}(X>k)=1-(1-p)^{k}
$$

Geometric distribution - graph of probabilities

Geometric distribution with parameter $p=0.3$:

Geometric distribution - expectation

$$
\begin{aligned}
& \mathrm{P}(X=k)=(1-p)^{k-1} p \quad k=1,2, \ldots \\
& \mathrm{E}(X)=\sum_{\text {all } x_{k}} x_{k} \mathrm{P}\left(X=x_{k}\right)=\sum_{k=1}^{\infty} k(1-p)^{k-1} p=p \sum_{k=1}^{\infty} k(1-p)^{k-1}
\end{aligned}
$$

Geometric distribution - expectation

$$
\mathrm{P}(X=k)=(1-p)^{k-1} p \quad k=1,2, \ldots
$$

$$
\mathrm{E}(X)=\sum_{\mathrm{all} x_{k}} x_{k} \mathrm{P}\left(X=x_{k}\right)=\sum_{k=1}^{\infty} k(1-p)^{k-1} p=p \sum_{k=1}^{\infty} k(1-p)^{k-1} .
$$

The sum on the right-hand side looks as the derivative of $-\sum_{k=0}^{\infty}(1-p)^{k}$:

$$
\begin{aligned}
\mathrm{E} X & =\sum_{k=1}^{\infty} k(1-p)^{k-1} p=-p\left(\sum_{k=1}^{\infty}(1-p)^{k}\right)^{\prime} \\
& =-p\left(\frac{1}{1-(1-p)}\right)^{\prime}=-p\left(\frac{-1}{p^{2}}\right) \\
& =\frac{1}{p} .
\end{aligned}
$$

Geometric distribution - variance

We can compute $\mathrm{E}\left(X^{2}\right)$ using the same procedure. From the above we know that

$$
\begin{aligned}
\mathrm{E}\left(X^{2}\right) & =\sum_{k=1}^{\infty} k^{2}(1-p)^{k-1} p=p \sum_{k=1}^{\infty} k^{2}(1-p)^{k-1} \\
& =p\left(\sum_{k=1}^{\infty}-k(1-p)^{k}\right)^{\prime}=p\left((1-p) \sum_{k=1}^{\infty}-k(1-p)^{k-1}\right)^{\prime} \\
& =p\left((1-p)\left(\sum_{k=1}^{\infty}(1-p)^{k}\right)^{\prime}\right)^{\prime}=p\left((1-p)\left(\frac{1}{p}\right)^{\prime}\right)^{\prime} \\
& =p\left(\frac{p-1}{p^{2}}\right)^{\prime}=p \frac{p^{2}-(p-1) 2 p}{p^{4}}=\frac{2-p}{p^{2}}
\end{aligned}
$$

Geometric distribution - variance

We can compute $\mathrm{E}\left(X^{2}\right)$ using the same procedure. From the above we know that

$$
\begin{aligned}
\mathrm{E}\left(X^{2}\right) & =\sum_{k=1}^{\infty} k^{2}(1-p)^{k-1} p=p \sum_{k=1}^{\infty} k^{2}(1-p)^{k-1} \\
& =p\left(\sum_{k=1}^{\infty}-k(1-p)^{k}\right)^{\prime}=p\left((1-p) \sum_{k=1}^{\infty}-k(1-p)^{k-1}\right)^{\prime} \\
& =p\left((1-p)\left(\sum_{k=1}^{\infty}(1-p)^{k}\right)^{\prime}\right)^{\prime}=p\left((1-p)\left(\frac{1}{p}\right)^{\prime}\right)^{\prime} \\
& =p\left(\frac{p-1}{p^{2}}\right)^{\prime}=p \frac{p^{2}-(p-1) 2 p}{p^{4}}=\frac{2-p}{p^{2}}
\end{aligned}
$$

Thus

$$
\operatorname{var}(X)=\mathrm{E}\left(X^{2}\right)-\left(\mathrm{E}(X)^{2}\right)=\frac{2-p}{p^{2}}-\left(\frac{1}{p}\right)^{2}=\frac{1-p}{p^{2}}
$$

Poisson distribution - motivation

The number of random occurrences during a given time is often modeled by the Poisson distribution:

- For example $X=$ "number of server requests in 15 seconds".
- Or $X=$ "number of customers in a shop during lunch time".

Poisson distribution - motivation

The number of random occurrences during a given time is often modeled by the Poisson distribution:

- For example $X=$ "number of server requests in 15 seconds".
- Or $X=$ "number of customers in a shop during lunch time".
- Finite population: n individuals independently decide whether to go to a shop or not.
- Then X is a binomial random variable: $X \sim \operatorname{Binom}(n, p)$.

Poisson distribution - motivation

The number of random occurrences during a given time is often modeled by the Poisson distribution:

- For example $X=$ "number of server requests in 15 seconds".
- Or $X=$ "number of customers in a shop during lunch time".
- Finite population: n individuals independently decide whether to go to a shop or not.
- Then X is a binomial random variable: $X \sim \operatorname{Binom}(n, p)$.
- Infinite population: we are interested in $X \sim \operatorname{Binom}(n, p)$ for $n \rightarrow \infty$.
- Useful approximation for great populations (molecules of gas, internet users, etc.).

Poisson distribution - motivation

The number of random occurrences during a given time is often modeled by the Poisson distribution:

- For example $X=$ "number of server requests in 15 seconds".
- Or $X=$ "number of customers in a shop during lunch time".
- Finite population: n individuals independently decide whether to go to a shop or not.
- Then X is a binomial random variable: $X \sim \operatorname{Binom}(n, p)$.
- Infinite population: we are interested in $X \sim \operatorname{Binom}(n, p)$ for $n \rightarrow \infty$.
- Useful approximation for great populations (molecules of gas, internet users, etc.).

Example - number of customers in a shop during lunch time

- number of inhabitants in a city: n;
- number of shops proportional to the number of inhabitants: $n_{o}=\rho n$, where ρ is the density of shops (number of shops per one inhabitant);
- probability that an inhabitant decides to go shopping: z;
- probability that an inhabitant goes to a particular shop: $p=z / n_{o}=z /(\rho n)$;
- number of inhabitants going to the particular shop: $X \sim \operatorname{Binom}(n, p)$;
- expected value: $\mathrm{E} X=n p=n z /(\rho n)=z / \rho$
... constant.

Poisson distribution - motivation

Binomial distribution with $n \rightarrow \infty, p \rightarrow 0$ and $n p=\lambda$ is

$$
\mathrm{P}(X=k)=\frac{n!}{k!(n-k)!} \frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k}
$$

Poisson distribution - motivation

Binomial distribution with $n \rightarrow \infty, p \rightarrow 0$ and $n p=\lambda$ is

$$
\mathrm{P}(X=k)=\frac{n!}{k!(n-k)!} \frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k}
$$

We rearrange the product

$$
\mathrm{P}(X=k)=\frac{n}{n} \quad \frac{(n-1)}{n} \quad \cdots \quad \frac{(n-k+1)}{n} \quad \frac{\lambda^{k}}{k!} \quad\left(1-\frac{\lambda}{n}\right)^{n} \quad\left(1-\frac{\lambda}{n}\right)^{-k}
$$

Poisson distribution - motivation

Binomial distribution with $n \rightarrow \infty, p \rightarrow 0$ and $n p=\lambda$ is

$$
\mathrm{P}(X=k)=\frac{n!}{k!(n-k)!} \frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k}
$$

We rearrange the product and take a limit $n \rightarrow \infty$

$$
\begin{array}{rccccccc}
\mathrm{P}(X=k)= & \frac{n}{n} & \frac{(n-1)}{n} & \cdots & \frac{(n-k+1)}{n} & \frac{\lambda^{k}}{k!} & \left(1-\frac{\lambda}{n}\right)^{n} & \left(1-\frac{\lambda}{n}\right)^{-k} \\
& \downarrow & \downarrow & & \downarrow & \downarrow & \downarrow & \downarrow \\
& 1 & 1 & \cdots & 1 & \frac{\lambda^{k}}{k!} & e^{-\lambda} & 1
\end{array}
$$

Poisson distribution - motivation

Binomial distribution with $n \rightarrow \infty, p \rightarrow 0$ and $n p=\lambda$ is

$$
\mathrm{P}(X=k)=\frac{n!}{k!(n-k)!} \frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k}
$$

We rearrange the product and take a limit $n \rightarrow \infty$

$$
\begin{array}{cccccccc}
\mathrm{P}(X=k)= & \frac{n}{n} & \frac{(n-1)}{n} & \cdots & \frac{(n-k+1)}{n} & \frac{\lambda^{k}}{k!} & \left(1-\frac{\lambda}{n}\right)^{n} & \left(1-\frac{\lambda}{n}\right)^{-k} \\
\downarrow & \downarrow & & \downarrow & \downarrow & \downarrow & \downarrow \\
& 1 & 1 & \ldots & 1 & \frac{\lambda^{k}}{k!} & e^{-\lambda} & 1
\end{array}
$$

Finally we have

$$
\lim _{n \rightarrow \infty} \mathrm{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} .
$$

Poisson distribution

Definition

A random variable X has the Poisson distribution with parameter $\lambda>0$ if

$$
\mathrm{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1, \ldots
$$

Notation: $X \sim$ Poisson (λ)

Poisson distribution

Definition

A random variable X has the Poisson distribution with parameter $\lambda>0$ if

$$
\mathrm{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1, \ldots
$$

Notation: $X \sim \operatorname{Poisson}(\lambda)$

Recalling the important formula:

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

we can check that he normalization condition holds:

$$
\sum_{k=0}^{\infty} \mathrm{P}(X=k)=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} e^{\lambda}=1 .
$$

Poisson distribution - graph of probabilities

Poisson distribution - expectation

$$
\mathrm{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1,2, \ldots
$$

Poisson distribution - expectation

$$
\mathrm{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1,2, \ldots
$$

The expectation is

$$
\begin{aligned}
\mathrm{E}(X)=\sum_{k=0}^{\infty} k \mathrm{P}(X=k) & =\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} \\
& =\lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \\
& =\lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \\
& =\lambda e^{-\lambda} e^{\lambda}=\lambda
\end{aligned}
$$

Poisson distribution - variance

$\mathrm{E}\left(X^{2}\right)$ is computed similarly:

$$
\begin{aligned}
\mathrm{E}\left(X^{2}\right) & =\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda e^{-\lambda} \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k-1}}{k(k-1)!} \\
& =\lambda e^{-\lambda}\left(\sum_{k=1}^{\infty}(k-1) \frac{\lambda^{k-1}}{(k-1)!}+\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\right) \\
& =\lambda e^{-\lambda}\left(\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!}+\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}\right) \\
& =\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right)=\lambda^{2}+\lambda .
\end{aligned}
$$

Poisson distribution - variance

$\mathrm{E}\left(X^{2}\right)$ is computed similarly:

$$
\begin{aligned}
\mathrm{E}\left(X^{2}\right) & =\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda e^{-\lambda} \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k-1}}{k(k-1)!} \\
& =\lambda e^{-\lambda}\left(\sum_{k=1}^{\infty}(k-1) \frac{\lambda^{k-1}}{(k-1)!}+\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\right) \\
& =\lambda e^{-\lambda}\left(\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!}+\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}\right) \\
& =\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right)=\lambda^{2}+\lambda .
\end{aligned}
$$

Thus

$$
\operatorname{var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E} X)^{2}=\lambda^{2}+\lambda-(\lambda)^{2}=\lambda .
$$

Recapitulation

- Bernoulli (Alternative) distribution with parameter $p, 0 \leq p \leq 1, \quad X \sim \operatorname{Be}(p)$: (another notation $X \sim \operatorname{Bernoulli}(p) \quad X \sim \operatorname{Alt}(p)$)
(One toss with an unbalanced coin.)

$$
\mathrm{P}(1)=p, \quad \mathrm{P}(0)=1-p, \quad \mathrm{E} X=p, \quad \operatorname{var} X=p(1-p)
$$

- Binomial distribution with parameters n and $p, 0 \leq p \leq 1, \quad X \sim \operatorname{Binom}(n, p)$: (Number of Heads in n tosses with an unbalanced coin.)

$$
\mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \mathrm{E} X=n p, \operatorname{var} X=n p(1-p)
$$

- Geometric distribution with parameter $p, 0<p<1, \quad X \sim \operatorname{Geom}(p)$:
(Number of tosses with an unbalanced coin until first Heads appears.)

$$
\mathrm{P}(X=k)=(1-p)^{k-1} p, k=1,2, \ldots, \quad \mathrm{E} X=\frac{1}{p}, \operatorname{var} X=\frac{1-p}{p^{2}}
$$

- Poisson distribution with parameter $\lambda>0, \quad X \sim \operatorname{Poisson}(\lambda)$: (Limit of the binomial distribution for $n \rightarrow \infty$.)

$$
\mathrm{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, k=0,1,2, \ldots, \quad \mathrm{E} X=\operatorname{var} X=\lambda
$$

Uniform distribution

All values in some interval (a, b) can occur with "equal" probability.

Uniform distribution

All values in some interval (a, b) can occur with "equal" probability.

Definition

A continuous random variable X has the uniform distribution with parameters $a<b$, $a, b \in \mathbb{R}$, if its density has the form:

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in(a, b) \\ 0 & \text { elsewhere }\end{cases}
$$

Notation: $X \sim \operatorname{Unif}(a, b), \quad X \sim \cup(a, b)$.

Uniform distribution

All values in some interval (a, b) can occur with "equal" probability.

Definition

A continuous random variable X has the uniform distribution with parameters $a<b$, $a, b \in \mathbb{R}$, if its density has the form:

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in(a, b) \\ 0 & \text { elsewhere }\end{cases}
$$

Notation: $X \sim \operatorname{Unif}(a, b), \quad X \sim \cup(a, b)$.
Normalization condition:

$$
\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=\int_{a}^{b} \frac{1}{b-a} \mathrm{~d} x=\frac{b-a}{b-a}=1
$$

Uniform distribution

All values in some interval (a, b) can occur with "equal" probability.

Definition

A continuous random variable X has the uniform distribution with parameters $a<b$, $a, b \in \mathbb{R}$, if its density has the form:

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in(a, b) \\ 0 & \text { elsewhere }\end{cases}
$$

Notation: $X \sim \operatorname{Unif}(a, b), \quad X \sim \cup(a, b)$.
Normalization condition:

$$
\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=\int_{a}^{b} \frac{1}{b-a} \mathrm{~d} x=\frac{b-a}{b-a}=1
$$

Distribution function:

$$
F_{X}(x)=\int_{a}^{x} \frac{1}{b-a} \mathrm{~d} t=\left[\frac{t}{b-a}\right]_{a}^{x}=\frac{x-a}{b-a} \quad \text { for } \quad x \in[a, b]
$$

Uniform distribution - graph of density

Uniform distribution - expectation, variance

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in(a, b) \\ 0 & \text { elsewhere }\end{cases}
$$

Uniform distribution - expectation, variance

$$
\begin{gathered}
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in(a, b), \\
0 & \text { elsewhere. }\end{cases} \\
\mathrm{E}(X)=\int_{a}^{b} x f_{X}(x) \mathrm{d} x=\int_{a}^{b} \frac{x}{b-a} \mathrm{~d} x=\frac{1}{b-a}\left[\frac{x^{2}}{2}\right]_{a}^{b}=\frac{a+b}{2},
\end{gathered}
$$

Uniform distribution - expectation, variance

$$
\begin{gathered}
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in(a, b), \\
0 & \text { elsewhere. }\end{cases} \\
\mathrm{E}(X)=\int_{a}^{b} x f_{X}(x) \mathrm{d} x=\int_{a}^{b} \frac{x}{b-a} \mathrm{~d} x=\frac{1}{b-a}\left[\frac{x^{2}}{2}\right]_{a}^{b}=\frac{a+b}{2}, \\
\mathrm{E}\left(X^{2}\right)=\int_{a}^{b} x^{2} f_{X}(x) \mathrm{d} x=\int_{a}^{b} \frac{x^{2}}{b-a} \mathrm{~d} x=\frac{1}{b-a}\left[\frac{x^{3}}{3}\right]_{a}^{b}=\frac{a^{2}+a b+b^{2}}{3},
\end{gathered}
$$

Uniform distribution - expectation, variance

$$
\begin{gathered}
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in(a, b), \\
0 & \text { elsewhere. }\end{cases} \\
\mathrm{E}(X)=\int_{a}^{b} x f_{X}(x) \mathrm{d} x=\int_{a}^{b} \frac{x}{b-a} \mathrm{~d} x=\frac{1}{b-a}\left[\frac{x^{2}}{2}\right]_{a}^{b}=\frac{a+b}{2}, \\
\mathrm{E}\left(X^{2}\right)=\int_{a}^{b} x^{2} f_{X}(x) \mathrm{d} x=\int_{a}^{b} \frac{x^{2}}{b-a} \mathrm{~d} x=\frac{1}{b-a}\left[\frac{x^{3}}{3}\right]_{a}^{b}=\frac{a^{2}+a b+b^{2}}{3}, \\
\operatorname{var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E} X)^{2}=\frac{a^{2}+a b+b^{2}}{3}-\frac{(a+b)^{2}}{4}=\frac{(b-a)^{2}}{12} .
\end{gathered}
$$

Exponential distribution

Very often used in queuing theory and theory of random processes.

Definition

A random variable X has the exponential distribution with parameter $\lambda>0$, if its density has the form:

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { for } x \in[0,+\infty) \\ 0 & \text { elsewhere }\end{cases}
$$

Notation: $X \sim \operatorname{Exp}(\lambda)$.

Exponential distribution

Very often used in queuing theory and theory of random processes.

Definition

A random variable X has the exponential distribution with parameter $\lambda>0$, if its density has the form:

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { for } x \in[0,+\infty) \\ 0 & \text { elsewhere }\end{cases}
$$

Notation: $X \sim \operatorname{Exp}(\lambda)$.
Normalization:

$$
\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=\int_{0}^{\infty} \lambda e^{-\lambda x} \mathrm{~d} x=\left[-e^{-\lambda x}\right]_{0}^{+\infty}=0-(-1)=1
$$

Exponential distribution

Very often used in queuing theory and theory of random processes.

Definition

A random variable X has the exponential distribution with parameter $\lambda>0$, if its density has the form:

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { for } x \in[0,+\infty) \\ 0 & \text { elsewhere }\end{cases}
$$

Notation: $X \sim \operatorname{Exp}(\lambda)$.
Normalization:

$$
\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=\int_{0}^{\infty} \lambda e^{-\lambda x} \mathrm{~d} x=\left[-e^{-\lambda x}\right]_{0}^{+\infty}=0-(-1)=1
$$

Distribution function:

$$
F_{X}(x)=\int_{0}^{x} \lambda e^{-\lambda t} \mathrm{~d} t=\left[-e^{-\lambda t}\right]_{0}^{x}=1-e^{-\lambda x}
$$

Exponential distribution - graph of density

Exponential distribution - expectation, variance

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { for } x \geq 0 \\ 0 & \text { elsewhere }\end{cases}
$$

Exponential distribution - expectation, variance

$$
\begin{gathered}
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { for } x \geq 0, \\
0 & \text { elsewhere. }\end{cases} \\
\mathrm{E}(X)=\int_{0}^{\infty} x f_{X}(x) \mathrm{d} x=\int_{0}^{\infty} x \lambda e^{-\lambda x} \mathrm{~d} x \stackrel{\text { by parts }}{=} \frac{1}{\lambda} \\
\mathrm{E}\left(X^{2}\right)=\int_{0}^{\infty} x^{2} f_{X}(x) \mathrm{d} x=\int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} \mathrm{~d} x \stackrel{2 \times \text { by parts }}{=} \frac{2}{\lambda^{2}} \\
\operatorname{var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E} X)^{2}=\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}} .
\end{gathered}
$$

\checkmark Details during tutorials.

Normal distribution

The normal distribution occurs in nature (population lengths, weights, etc.) and is used as an approximation for sums and means of random variables.

Definition

A random variable X has the normal (Gaussian) distribution with parameters μ and $\sigma^{2}>0$, if the density has the form:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad \text { for } x \in(-\infty,+\infty)
$$

Notation: $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.

- Attention: Some literature and software uses $X \sim \mathrm{~N}(\mu, \sigma)$.
- We will further use the symbol σ for $\sqrt{\sigma^{2}}$.
- $\mathrm{N}(0,1)$ is called the standard normal distribution.

Normal distribution

The normal distribution occurs in nature (population lengths, weights, etc.) and is used as an approximation for sums and means of random variables.

Definition

A random variable X has the normal (Gaussian) distribution with parameters μ and $\sigma^{2}>0$, if the density has the form:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad \text { for } x \in(-\infty,+\infty)
$$

Notation: $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.

- Attention: Some literature and software uses $X \sim \mathrm{~N}(\mu, \sigma)$.
- We will further use the symbol σ for $\sqrt{\sigma^{2}}$.
- $\mathrm{N}(0,1)$ is called the standard normal distribution.

Distribution function: cannot be given explicitly, only numerically. The standard normal distribution function is tabulated and denoted as Φ.

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t
$$

Standard normal distribution $N(0,1)$

Density of the normal distribution: $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$

Density of the normal distribution: $Z \sim \mathrm{~N}(0,1)$

Density of the normal distribution

Normal distribution - expectation, variance

Normal random variable $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad \text { for } x \in(-\infty,+\infty)
$$

Normal distribution - expectation, variance

Normal random variable $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$:

$$
\begin{aligned}
f_{X}(x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad \text { for } x \in(-\infty,+\infty) . \\
\mathrm{E}(X) & =\int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \stackrel{\text { substitution }}{=} \mu . \\
\operatorname{var}(X) & =\sigma^{2}
\end{aligned}
$$

Standardization of random variable

Consider a random variable X with expected value $\mathrm{E} X=\mu$ and variance var $X=\sigma^{2}$.
In the easiest possible way, try to convert the variable X to the variable Z with parameters
$\mathrm{E} Z=0$ and var $Z=1$ (standardization):

Standardization of random variable

Consider a random variable X with expected value $\mathrm{E} X=\mu$ and variance var $X=\sigma^{2}$.
In the easiest possible way, try to convert the variable X to the variable Z with parameters
$\mathrm{E} Z=0$ and $\operatorname{var} Z=1$ (standardization):

- We subtract the expectation μ :

$$
\mathrm{E}(X-\mu)=\mathrm{E} X-\mu=0 \quad \text { and } \quad \operatorname{var}(X-\mu)=\operatorname{var} X=\sigma^{2} .
$$

- We rescale with the value $\sigma=\sqrt{\operatorname{var} X}$:

$$
\mathrm{E}\left(\frac{X-\mu}{\sigma}\right)=\frac{\mathrm{E}(X-\mu)}{\sigma}=0 \text { and } \operatorname{var}\left(\frac{X-\mu}{\sigma}\right)=\frac{\operatorname{var}(X-\mu)}{\sigma^{2}}=\frac{\sigma^{2}}{\sigma^{2}}=1 .
$$

Standardization of random variable

Consider a random variable X with expected value $\mathrm{E} X=\mu$ and variance var $X=\sigma^{2}$.
In the easiest possible way, try to convert the variable X to the variable Z with parameters
$\mathrm{E} Z=0$ and $\operatorname{var} Z=1$ (standardization):

- We subtract the expectation μ :

$$
\mathrm{E}(X-\mu)=\mathrm{E} X-\mu=0 \quad \text { and } \quad \operatorname{var}(X-\mu)=\operatorname{var} X=\sigma^{2} .
$$

- We rescale with the value $\sigma=\sqrt{\operatorname{var} X}$:

$$
\mathrm{E}\left(\frac{X-\mu}{\sigma}\right)=\frac{\mathrm{E}(X-\mu)}{\sigma}=0 \text { and } \operatorname{var}\left(\frac{X-\mu}{\sigma}\right)=\frac{\operatorname{var}(X-\mu)}{\sigma^{2}}=\frac{\sigma^{2}}{\sigma^{2}}=1 .
$$

The required transformation is thus linear and the random variable

$$
Z=\frac{X-\mu}{\sigma}
$$

indeed has a zero mean and a variance of 1 .

Standardization of a normal random variable

For practical uses we are interested in the standardization of the normal random variable.

Standardization of a normal random variable

For practical uses we are interested in the standardization of the normal random variable.

Theorem

Let a random variable X have the normal distribution $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$. Then the random variable

$$
Z=\frac{X-\mu}{\sigma}
$$

has the standard normal distribution, $Z \sim \mathrm{~N}(0,1)$.

Standardization of a normal random variable

For practical uses we are interested in the standardization of the normal random variable.

Theorem

Let a random variable X have the normal distribution $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$. Then the random variable

$$
Z=\frac{X-\mu}{\sigma}
$$

has the standard normal distribution, $Z \sim \mathrm{~N}(0,1)$.

Proof

$$
\begin{aligned}
F_{Z}(z) & =\mathrm{P}(Z \leq z)=\mathrm{P}\left(\frac{X-\mu}{\sigma} \leq z\right)=\mathrm{P}(X \leq \sigma z+\mu)=F_{X}(\sigma z+\mu) \\
f_{Z}(z) & =\frac{\partial F_{Z}}{\partial z}(z)=\frac{\partial F_{X}}{\partial z}(\sigma z+\mu)=\sigma f_{X}(\sigma z+\mu) \\
& =\sigma \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\sigma z+\mu-\mu)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
\end{aligned}
$$

Standardization of a normal random variable

Remark

From the previous theorem it follows that:
If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim \mathrm{N}(0,1)$.

Standardization of a normal random variable

Remark

From the previous theorem it follows that:
If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim \mathrm{N}(0,1)$.
This is used for obtaining the values of the distribution function of the variable X from the tables of the standard normal distribution Z :

$$
\begin{aligned}
F_{X}(x) & =\mathrm{P}(X \leq x)=\mathrm{P}\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right) \\
& =\mathrm{P}\left(Z \leq \frac{x-\mu}{\sigma}\right)=\Phi\left(\frac{x-\mu}{\sigma}\right)
\end{aligned}
$$

Standardization of a normal random variable

Recapitulation

- Uniform distribution on the interval $[a, b], \quad X \sim \operatorname{Unif}(a, b)$ or $X \sim \mathrm{U}(a, b)$:

$$
f_{X}(x)=\frac{1}{b-a}, x \in[a, b] \quad \mathrm{E} X=\frac{a+b}{2}, \quad \operatorname{var} X=\frac{(b-a)^{2}}{12}
$$

- Exponential distribution with parameter $\lambda>0, \quad X \sim \operatorname{Exp}(\lambda)$:

$$
f_{X}(x)=\lambda e^{-\lambda x}, x \in[0,+\infty) \quad \mathrm{E} X=\frac{1}{\lambda}, \quad \operatorname{var} X=\frac{1}{\lambda^{2}} .
$$

- Normal (Gaussian) distribution with parameters $\mu \in \mathbb{R}$ and $\sigma^{2}>0$, $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, x \in(-\infty,+\infty) \quad \mathrm{E} X=\mu, \quad \operatorname{var} X=\sigma^{2} .
$$

