Review - Linear regression

Estimating the covariance and correlation

The covariance of two random variables is defined as

$$
\operatorname{cov}(X, Y)=\mathrm{E}((X-\mathrm{E} X)(Y-\mathrm{E} Y))=\mathrm{E}(X Y)-\mathrm{E} X \mathrm{E} Y
$$

and can be estimated based on a random sample of paired observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ using the sample covariance as

$$
s_{X, Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)=\frac{1}{n-1}\left(\sum_{i=1}^{n} X_{i} Y_{i}-n \bar{X}_{n} \bar{Y}_{n}\right) .
$$

The correlation coefficient of two random variables gives a measure of their mutual linear dependence is defined as

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var} X} \sqrt{\operatorname{var} Y}}
$$

$\rho_{X, Y}$ is always in $[-1,1]$ and can be estimated using the sample correlation coefficient as

$$
r_{X, Y}=\frac{s_{X, Y}}{s_{X} \cdot s_{Y}}
$$

Linear regression

If we want to model the dependence of Y on x taken as fixed, we can use linear regression. We assume that there is a linear dependence of the form

$$
Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i},
$$

where ε_{i} are independent zero-mean random errors and α and β are parameters which we want to estimate.
Based on independent pairs of observations $\left(x_{1}, Y_{1}\right), \ldots,\left(x_{n}, Y_{n}\right)$, we estimate the parameters by estimators a and b using the least squares method. If we view the explanatory variables $\left(x_{1}, \ldots, x_{n}\right)$ as a realization of a random sample $\left(X_{1}, \ldots, X_{n}\right)$, we obtain

$$
\begin{aligned}
& b=\frac{\sum_{i=1}^{n} X_{i} Y_{i}-n \bar{X}_{n} \bar{Y}_{n}}{\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}_{n}^{2}}=\frac{s_{X, Y}}{s_{X}^{2}}=r_{X, Y} \frac{s_{Y}}{s_{X}}, \\
& a=\bar{Y}_{n}-b \cdot \bar{X}_{n}
\end{aligned}
$$

If we want to predict the value of Y for a certain value of x, we can find the prediction as

$$
\hat{Y}=a+b \cdot x
$$

If we want to find x fitting for a certain $Y=y$, we can use the reverse prediction

$$
\hat{x}=\frac{y-a}{b} .
$$

Exercises 12 - Linear Regression

1. We study the connection between the bodily weight and height. We have sampled five individuals and measured their heights in centimeters $\mathbf{X}=(158,161,168,175,182)$ and their weights in kilograms $\mathbf{Y}=(55,63,75,71,83)$.
a) Estimate the correlation between the weight and height.
b) Suppose there is a linear dependence of weight on height. Estimate the parameters of the regression line.
c) What is the expected weight of a person who is 165 cm tall?
2. We study the distortion of a plastic sheet depending on used pressure. We measured:

x_{i}	2	4	6	8	10	MPa
Y_{i}	14	35	48	61	80	mm

a) Assume linear dependence. Find the estimates of the parameters of the regression line.
b) What pressure do we need to produce a distortion of 70 mm ?
3. In a computer classroom there are 25 computers. We study the total electricity consumption Y_{i} depending on number of running computers x_{i}. For measured data $\left(x_{1}, Y_{1}\right), \ldots,\left(x_{25}, Y_{25}\right)$, we have following statistics available:

$$
\begin{aligned}
& \bar{X}_{n}=12, \quad \bar{Y}_{n}=3800, \quad s_{X, Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)=5000, \\
& s_{X}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}=4, \quad s_{Y}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}}=1500 .
\end{aligned}
$$

Consider the linear model $Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$, for $i=1 \ldots, n$ with normally distributed independent errors ε_{i}.
a) Find the estimates of parameters α and β.
b) Estimate the electricity consumption of 40 running computers.
c) Find the estimate of the correlation coefficient $\rho_{X, Y}$.
4. We study the linear dependence of monthly incomes Y_{i} (in thousands of CZK) on the length of studies x_{i} (in years). From 20 records we have computed the following characteristics

$$
\begin{aligned}
& \sum_{i=1}^{20} X_{i}=300, \quad \sum_{i=1}^{20} Y_{i}=480, \quad \sum_{i=1}^{20} X_{i}^{2}=5000, \quad \sum_{i=1}^{20} Y_{i}^{2}=13520, \\
& \sum_{i=1}^{20} X_{i} Y_{i}=8000 .
\end{aligned}
$$

a) Find the estimates of the coefficients α and β.
b) Estimate the income of a person who has studied for 13 years.
c) Estimate the correlation between the length of studies and monthly incomes.
5. Suppose we observe the following data:

x_{i}	5.7	13.8	9	0.1	9.5
Y_{i}	16.2	31.2	24	8	22.3

a) Estimate the regression coefficients of the linear model $Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$.
b) Estimate the regression coefficients of the quadratic model $Y_{i}=\gamma+\delta x_{i}^{2}+\varepsilon_{i}$.
6. Consider the linear model $Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$, for $i=1, \ldots, n$ with normally distributed errors ε_{i}. For $n=100$ observed pairs $\left(x_{i}, Y_{i}\right)$ we have computed:

$$
\bar{X}_{n}=10, \quad s_{X}^{2}=1.2, \quad \bar{Y}_{n}=158.3, \quad s_{Y}^{2}=19.6, \quad s_{X, Y}=19.4
$$

Find the estimates of parameters α and β.
7. For the following data

x_{i}	6	14	9	1	9
Y_{i}	16	32	24	8	22

consider the linear model: $Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$
and the quadratic model: $Y_{i}=\gamma+\delta x_{i}^{2}+\eta_{i}$.
a) Find the estimates of the regression parameters for both models.
b) Which of the models fits the data better? (Find the coefficient of determination R^{2} for both models.)

