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7.1 Introduction

7.1.1 Integers and primes

In this section we present some elements of number theory Let us stress that in the whole section we
work exclusively with integers (and their subsets).

Z denotes the set of integers, i.e., Z = {. . . ,−2,−1, 0, 1, 2, . . . }, on which the operations of addition
and multiplication are defined as usual. To define subtraction, we simply use addition of opposite
numbers. Similarly, if we want to introduce division, we use multiplication. However, it is necessary
to define what exactly should the division of two integers express. We call this operation division with
remainder and we call the property meaning that one number divides another with zero remainder,
divisibility. Let us define it properly.

Definition 7.1 (Divisibility). A number a divides a number b (or, b is divisible by a) if there is an
integer k such that b = k · a. This fact is denoted by a | b. Similarly, if a does not divide b, we write
a - b. The number a is called a divisor (or a factor) of the number b and, conversely, b is called a
multiple of a.

Remark 7.2. The number 1 is a divisor of any integer by this definition. Moreover 0 is divisible by
any integer, i.e., 0 is divisible also by 0 since 0 = k · 0.

Theorem 7.3 (Properties of divisibility). Consider a, b, c ∈ Z.

• If a | b and a | c then a
∣∣ (b+ c).

• If a | b then a | (nb) for every n ∈ Z.

• a | b if and only if |a| | |b|.

• If a | b and b 6= 0 then | a | ≤ | b | .

• a | b ∧ a | c if and only if a | (mb+ nc) for every m,n ∈ Z.

• If a | (b+ c) ∧ a | b then a | c.

Theorem 7.4 (The Division Algorithm). Let a ∈ Z, b ∈ N. Then there exist unique q ∈ Z and unique
r ∈ N0, with 0 ≤ r < | b |, such that

a = b · q + r.

The integer q is called the quotient of a, b, and r is called the remainder of the division of a by b.
We also write r = a mod b (operation modulo).

Having already defined the division we can define more:

Definition 7.5. Let a, b ∈ Z, then:

• A positive integer d is a common divisor of a, b, if d | a and d | b.

• A positive integer d is the greatest common divisor of a, b (and we write d = gcd(a, b)) if at
least one of a, b is nonzero and d is the greatest of all divisors of a, b, i.e., for every c ∈ N, if c | a
and c | b, then also c | d.

• If gcd(a, b) = 1 then positive integers a, b are relatively prime (or, co-prime).

• gcd(0, 0) is explicitly defined as 0.

• A positive integer ` is a common multiple of a, b if a | ` and b | `.
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• A positive integer ` is the least common multiple of a, b (and we write ` = lcm(a, b)) if both
a, b are nonzero and ` is the least of all multiples of a, b, i.e., for every c ∈ N, if a | c ∧ b | c then
also ` | c. If a = 0 or b = 0 then lcm(a, b) = 0.

Theorem 7.6 (Properties of gcd and lcm). Let a, b ∈ Z, then:

• If n is a common multiple of a, b, then lcm(a, b) divides n.

• If a|n and b|n, then lcm(a, b)|n.

• gcd(a, b) = gcd(|a|, |b|) and lcm(a, b) = lcm(|a|, |b|).

• Denote d = gcd(a, b). Then gcd
(
a

d
,
b

d

)
= 1.

• gcd(a+ cb, b) = gcd(a, b) for any c ∈ Z.

• If a|bc for some c ∈ Z and a, b are co-prime (i.e., gcd(a, b) = 1), then a|c.

• The greatest common divisor of positive integers a, b is the least positive integer which is a linear
combination of a, b. Very often you can find this fact named by French mathematician Étienne
Bézout – Bézout’s identity:

gcd(a, b) = d = α · a+ β · b ,

where α, β are integer coefficients of this linear combination.

Primes and factorization

Definition 7.7. A positive integer p > 1 is a prime if p is divisible only by 1 and p.
The factorization of a positive integer n > 1 is the identity

n = pα1
1 · p

α2
2 · p

α3
3 · · · p

αk
k ,

where k ≥ 1 is an integer, p1 < p2 < · · · < pk are distinct primes and α1, α2, . . . , αk are positive
integers.

Theorem 7.8. The set of all primes is infinite.

Theorem 7.9 (Fundamental Theorem of Number Theory). Every positive integer n ≥ 2 can be
uniquely represented as the product of prime numbers. This unique form is called canonical factor-
ization of n (or prime factorization of n).

Corollary 7.10. Let p be a prime and let p | (a1 · a2 · · · ak), where ai is a non-negative integer for
every i = 1, . . . , k. Then there is aj , 1 ≤ j ≤ k, such that p | aj.

Proposition 7.11. Consider two numbers a, b ∈ N and the factorizations of a, b of the form

a = pα1
1 · p

α2
2 · · · p

αk
k , b = pβ1

1 · p
β2
2 · · · p

βk
k ,

where pi are primes (here, we allow possible zero exponent) less or equal to a, b. Then

gcd(a, b) = p
min{α1,β1}
1 · pmin{α2,β2}

2 · · · pmin{αk,βk}
k .

Similarly,
lcm(a, b) = p

max{α1,β1}
1 · pmax{α2,β2}

2 · · · pmax{αk,βk}
k .

Corollary 7.12.
lcm(a, b) = |a| · |b|

gcd(a, b) ∀ a, b ∈ Z \ {0}.
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Eukleid’s algorithm

Eukleid’s algorithm (or, Euclid’s algorithm, EA) is a very old algorithm to find the greatest common
divisor of two positive integers efficiently (i.e., without factorization).

Theorem 7.13. Let a, b be two positive integers s.t. a ≥ b > 0. Consider the sequence {rn}k+1
n=0 of

decreasing remainders defined by
rn+2 = rn mod rn+1

with initial conditions r0 = a, r2 = 1, where rk+1 = 0 (if k > 0) is the first zero element of this
sequence. Then the last nonzero element rk (i.e., the last nonzero remainder) is the greatest common
divisor of a, b. That is, gcd(a, b) = rk.

Moreover, there is an extended version of Eukleid’s algorithm (or, Euclid’s, EEA) which generates
the integer coefficients α, β of Bézout’s identity:

gcd(a, b) = d = α · a+ β · b.

Let us introduce two implementations of EEA – in a table and in a matrix.

Algorithm 7.14 (EEA in table).
1. Consider a ≥ b > 0. Then set r0 := a, r1 = b. Denote the table header as ri, αi, β,qi.

2. Fill the first row of the table representing r0, α0, β0, q0 with values a, 1, 0, − (which in fact means
r0 = 1 · a+ 0 · b).

3. Fill the next row r1, α1, β1, q1 with values: b, 0, 1,
⌊
a

b

⌋
(which means r1 = 0 · a+ 1 · b and integer

quotient q1 = a mod b).

4. If i ≥ 2, then set
ri := ri−2 − qi−1 · ri−1 .

If ri 6= 0 then use the following formulas to fill in this row:

αi := αi−2 − qi−1 · αi−1

βi := βi−2 − qi−1 · βi−1

qi := bri−1/ric

5. If ri 6= 0, repeat step 4 for the next row (i := i+ 1). If ri = 0, set k = i− 1 and stop.

The greatest common divisor is in the second to last row of the table:

gcd(a, b) = rk, α = αk, β = βk.

Moreover, α, β are the coefficients of the linear combination gcd(a, b) = α · a + β · b. Beware of the
order of a, b.

ri αi βi qi

a 1 0 −

b 0 1 q1 = bab c

r2 = a− q1 · b 1− q1 · 0 0− q2 · 1 q2

. . . . . . . . . . . .

rk = gcd(a, b) α β qk

rk+1 = 0 − − −
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EEA can be also implemented as a special Gaussian elimination on matrix 2× 3:

Algorithm 7.15 (EEA in matrix).
1. The first column of the matrix consists of a, b, where a ≥ b.

2. After the first column, write the 2× 2-identity matrix.

3. Eliminate: Subtract a multiple of the second row from the first one such that the result is a
remainder, i.e., a1,1 mod a2,1. Write the eliminated first row to the second row and the previously
second row write as a first row of the new matrix.

4. Repeat step 3 until the value of a2,1 is 0.

Results in the matrix:(
a 1 0
b 0 1

)
←−
−q

+
∼
(

b 0 1
(a mod b) 1 −q

)
∼ · · · modif. GEM · · · ∼

(
gcd(a, b) α β

0 x′ y′

)
,

where α, β are the coefficients of linear combination gcd(a, b) = α · a + β · b. Beware of the order of
a, b!

Diophantine equations

An equation ax+ by = c with unknowns x, y and a, b, c ∈ Z is called a (linear) Diophantine equation,
if the only solutions of interest are the integers ones (i.e., x, y ∈ Z).

Theorem 7.16 (The existence of a solution). Let d = gcd(|a|, |b|) for a Diophantine equation ax+by =
c. Then

• the equation has no solution in Z iff d does NOT divide c.

• the equation has (at least one) solution in Z iff d divides c.

Therefore, we are able to decide when a solution exists. But are we able to construct it?

Algorithm 7.17 (Finding solution of ax+ by = c).
1. There is no solution if c is not a multiple of gcd(a, b).

2. If c is a multiple of gcd(a, b), then find α, β ∈ Z such that gcd(a, b) = α · a+ β · b using EEA.

3. Multiply the Bézout’s identity from step 2. by number c

gcd(a, b) , so that

gcd(a, b) = α · a+ β · b ⇒ c = gcd (a, b) · c

gcd(a, b) = α · c

gcd(a, b) · a+ β · c

gcd(a, b) · b;

thus the numbers
x = α · c

gcd(a, b) and y = β · c

gcd(a, b)
are solutions of the given Diophantine equation.

Having found some solution (x, y) ∈ Z2 of ax+ by = c, we can easily obtain other solutions using
zero addition cleverly:

c = ax+ by

= ax+ by + (ab− ab)
= a(x+ b) + b(y − a) ,

thus, the pair (x+ b, y − a) is a solution as well. This idea can be applied many times, therefore it is
no surprise that the difference of any two solutions of the type (k · b,−k · a), with k ∈ Z, are solutions
of the associated homogeneous equation.
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Definition 7.18. Given a Diophantine equation ax+by = c, the equation ax+by = 0 is an associated
homogeneous equation of the original one.

Theorem 7.19. Consider a Diophantine equation ax+ by = c and gcd(a, b) | c. Then:

• If (xp, yp) ∈ Z2 is some solution (a particular solution) and (xh, yh) ∈ Z2 is some solution of the
associated homogeneous equation, then (x, y) = (xp, yp) + (xh, yh) ∈ Z2 is also a solution of the
given Diophantine equation.

• Consider a homogeneous Diophantine equation ax + by = 0 where a, b ∈ Z are co-prime. Then
all solutions are of the form (x, y) = k · (b,−a), where k ∈ Z.

• Consider a, b ∈ Z not co-prime, i.e., with gcd (a, b) > 1. Then the homogeneous equation should
be simplified to

a

gcd (a, b) · x+ b

gcd (a, b) · y = 0

(both coefficients are now co-prime integers, see Theorem 7.6). Then every solution is of type
(x, y) = k ·

(
b

gcd (a, b) ,
−a

gcd (a, b)

)
for k ∈ Z.

We can summarize the items above as follows: Consider α, β ∈ Z and gcd(a, b) = a · α + b · β,
where gcd(a, b) | c. Then the solution set of a Diophantine equation ax+ by = c is{(

α · c

gcd(a, b) + k
b

gcd(a, b) , β ·
c

gcd(a, b) − k
a

gcd(a, b)

)
; k ∈ Z

}
.

7.1.2 Modular arithmetic

In this section we introduce modular arithmetic and linear congruences.

Powers and inversions

For a given positive integer m we will denote Zm (or, Z mod m) the set of integers modulo m. The
most common notation is

Zm = {0, 1, 2 . . . ,m− 1}.

Definition 7.20. In this structure, every b ∈ Z is replaced by its remainder r ∈ Zm = {0, 1, . . . ,m−1}
of b when divided by m (i.e., b mod m).

We define arithmetic on the set Zm. When adding or multiplying, every number (remainder) of
Zm represents all integers equivalent to it∗.

• a+ b in Zm is performed as a sum of two integers, only the result is ”moduled” by modulus m,
i.e., the result is divided by m and its remainder is returned.

• a · b is computed in the same way.

Both operations (addition and multiplication) possess the same properties as in Z – associativity,
commutativity and distributivity – which allows us to use brackets and change the order of sum-
mands/factors in Zm. We can also ”module” during the operations of addition and multiplication,
not only ”at the end” of the process. This way we will never work with unnecessarily big numbers.

Formally, we can define the equivalence relation ≡ (mod m) (or ≡m) on Z as follows.
∗This is a binary relation on set Z (stay tuned for Tutorial 8), as a property of two numbers having the same remainder

after division by m.
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Definition 7.21 (Congruence). Let a, b,m ∈ Z, where m > 1. If m|(a− b), then a is congruent with
b modulo m, denoted by a ≡ b (mod m) (or, a = b (mod m)). If m - (a− b), then a is not congruent
with b modulo m, denoted by a 6≡ b (mod m).

The set Z/ ≡m= Zm can be expressed by different representatives of classes of equivalence, e.g.,:

Zm = {0, 1, 2, . . . ,m− 1}
= {m,m+ 1,m+ 2, . . . , 2m− 1}
= {k ·m, k ·m+ 1, k ·m+ 2, . . . , 2k ·m− 1}
= {−m,−m+ 1,−m+ 2, . . . ,−1}
= · · · .

Thus, we can work with any number with the same remainder modulo m. E.g.,

m− 1 ≡ 2m− 1 ≡ 3m− 1 ≡ −1 ≡ −2m− 1 ≡ −3m− 1 (mod m).

This can simplify calculations, as in the following example.

Example 7.22. Evaluate this expression in the standard arithmetic of Z and then find the represen-
tative modulo 23. Compare with calculations done directly in Z23.

(3 · 5 · 24 + 4 · 13 · 5 + 9 · 5) · 22 ≡ (360 + 260 + 45) · 22 (mod 23)
≡ 665 · 22 (mod 23)
≡ 14630 (mod 23)
≡ 2 (mod 23)
versus

(3 · 5 · 24 + 4 · 13 · 5 + 9 · 5) · 22 ≡ (3 · 5 · 1 + 4 · 13 · 5 + 9 · 5)(−1) (mod 23)
≡ (15 + 6 · 5 + (−1))(−1) (mod 23)
≡ (15 + 7− 1)(−1) (mod 23)
≡ 21(−1) (mod 23)
≡ (−2)(−1) (mod 23)
≡ 2 (mod 23) .

The latter seems to be longer but we are only working with small numbers so the result can be obtained
without any extra electronic help.

Remark 7.23. Consider a, b, c, d,m ∈ Z, with m ≥ 2. If a ≡ b (mod m) and c ≡ d (mod m) then
also

a+ c ≡ b+ d (mod m) ,
a− c ≡ b− d (mod m) ,
a · c ≡ b · d (mod m) .

Remark: We cannot reduce the congruence as in standard arithmetic. We need to apply the following
rule:

a · c ≡ b · c (mod m) ⇒ a ≡ b
(

mod m

gcd (c,m)

)
,

thus we change the modulus as well!

Zm has (compared to Z) this additional property – the existence of multiplicative inverse elements.
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Theorem 7.24 (The Existence of Multiplicative Inverse in Zm).
If a 6= 0 is an arbitrary number in Zm, then there is a unique number x ∈ Zm, such that

a · x ≡ x · a ≡ 1 (mod m) ⇐⇒ gcd(a,m) = 1.

The number x is called a multiplicative inverse of a modulo m and is denoted by x ≡ a−1 (mod m)
(or, x = a−1 in Zm).

If m is prime, then the equation has a solution for every a 6= 0 in Zm (i.e., an inverse element
exists for any nonzero a ∈ Zm).

We will practise the finding of inverse elements in the exercises below.
The last operation we define for Zm is the power. This can be inherited from Z as well (only

”modulo” the result), however, there are better methods in modular arithmetic. We will practise it
using two theorems.

Theorem 7.25 (Fermat’s Little Theorem (FLT)). Let p be a prime. If a ∈ N, then ap ≡ a (mod p).

We will use this version of the theorem: If a prime p is co-prime with a, then

ap−1 ≡ 1 (mod p) .

By this theorem, we can reduce exponentials by multiples of p− 1.
We can reduce the exponent for non-prime modulus as well. We need to use a more general

theorem than Fermat’s Little Theorem: Euler’s Theorem.

Theorem 7.26 (Euler’s Theorem). Let m ∈ N and a ∈ Z. If gcd(m, a) = 1 then

aϕ(m) ≡ 1 (mod m) ,

where ϕ(m) is Euler’s totient function.

Euler’s totient function is difficult to evaluate. By the definition, ϕ(m) is the number of all positive
integers less than or equal to m co-prime with m. The properties of this function are:

• if p ∈ N is a prime then ϕ(p) = p− 1;

• if p ∈ N is a prime then ϕ(pα) = pα − pα−1;

• if m,n ∈ N and gcd(m,n) = 1, then ϕ(m · n) = ϕ(m) · ϕ(n);

• if m ∈ N has prime factorization m = pα1
1 · p

α2
2 · p

α3
3 · · · p

αk
k , then

ϕ(m) = (pα1
1 − p

α1−1
1 ) · (pα2

2 − p
α2−1
2 ) · · · (pαk

k − p
αk−1
k )

= m

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1
pk

)
,

where k ≥ 1 is a non-negative integer, p1 < p2 < · · · < pk are distinct primes and α1, α2, . . . , αk
are positive integers.

Linear congruences, systems of linear congruences

In the previous section, we presented the greatest common divisor of integers a, b (that we denoted
gcd(a, b)) and the Eukleid’s algorithm by which gcd can be calculated. An extended version of this
algorithm allowed us to find coefficients in Bézout’s identity, which has an extensive application in the
number theory. Recall that Bézout’s identity is given as

gcd(a, b) = a · x+ b · y

where x, y are integers.
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Theorem 7.27 (Existence and number of solutions for congruences Theorem). Let a, b,m ∈ Z, with
m > 1. A linear congruence

a · x ≡ b (mod m)
has gcd(a,m) solutions iff gcd(a,m)|b. Otherwise, there are no solutions. All solutions in Zm can be
obtained by the formula

x ≡ x0 + k · m

gcd(a,m) (mod m),

where k is an arbitrary integer and given x0 there is a y0 such that the pair (x0, y0) is a solution of
the equation

ax0 +my0 = b.

Furthermore, k ∈ Z can be restricted. There are only finitely many solutions in Zm, namely gcd (a,m)
elements of Zm. The set of all solutions of a congruence a · x ≡ b (mod m) is given as{

x0 + k · m

gcd (a,m) (mod m) : k ∈ {0, 1, . . . , gcd (a,m)− 1}
}
.

Theorem 7.28 (Chinese Remainder Theorem (ChRTh)). Consider a system of linear congruences

x ≡ a1 (mod m1),
x ≡ a2 (mod m2),
· · ·

x ≡ aN (mod mN ),

where gcd(mi,mj) = 1 for every i, j ∈ {1, 2, . . . , N}, i 6= j (i.e., all pairs of mi’s are co-prime). Then
a solution of the system exists and is unique in ZM , where M = m1 · m2 · · · mN .

This theorem does not give us any algorithm to find a solution. Let us work it out. Put Mi = M

mi
.

Since gcd(mi,Mi) = 1, then solutions xi of linear congruences

Mi · xi ≡ 1 (mod mi)

exist for every i ∈ {1, . . . , N}, where N is the number of equations. Moreover

Mi · xi ≡ 0 (mod mj) ∀ j 6= i.

A solution of the system can be constructed as follows:

x ≡ a1 · x1 ·M1 + a2 · x2 ·M2 + · · ·+ aN · xN ·MN (mod M).

Theorem 7.29 (Chinese Remainder Theorem – general case). Consider a system of linear congruences

x ≡ a1 (mod m1),
x ≡ a2 (mod m2),
· · ·

x ≡ aN (mod mN ),

where gcd(mi,mj) divides ai − aj for all i, j ∈ {1, 2, . . . , N}, i < j. Then a solutions exists and is
unique in ZM , where M = lcm(m1, m2, . . . , mN).

An application of this theorem will be presented in exercises.

Reference:

1. original materials of BIE-ZDM at FIT:
https://courses.fit.cvut.cz/courses/BIE-ZDM/
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7.2 Exercises

7.2.1 Integers and primes

Exercise 7.1. Prove that the divisibility relation a | b on the set N (positive integers) has the following
properties:

• it is reflexive, i.e., for every a ∈ N, we have a | a|;

• it is antisymmetric, i.e., for every a, b ∈ N, if a | b and b | a then a = b;

• it is transitive, i.e., for every a, b, c ∈ N, if a | b and b | c then a | c.

Exercise 7.2. Prove the following statements regarding divisibility, for every a, b, c, d ∈ Z:

a) a | b if and only if b (mod a) = 0 (mod is the operation of remainder after division);

b) if a | b and c | d, then ac | bd;

c) If ac | bc and c 6= 0, then a | b;

d) prove or disprove: if a | bc, then a | b or a | c.

Exercise 7.3. Prove that the product of three consecutive integers is divisible by 6.

Exercise 7.4. Use a direct proof and/or mathematical induction to prove the following statements
for every n ∈ N:

a) 2 | (n2 − n),

b) 3 | (n3 + 2n),

c) 6 | (n3 − n),

d) 2 | (n2 + n),

e) 5 | (n5 − n),

f) 21 | (4n+1 + 52n−1) (where n ≥ 1).

Exercise 7.5. For each of the following pairs a, b ∈ Z, find gcd(a, b) both using the factorization
and the extended Eukleid’s algorithm, express the Bézout’s identity (i.e., write gcd(a, b) as a linear
combination of a and b) and calculate lcm(a, b).

a) a = 420, b = 231,

b) a = −60, b = −156,

c) a = 118, b = −131.

Exercise 7.6. Prove that the prime factorization of a number n ≥ 2 contains at most dlog2 ne factors.

Exercise 7.7. Find a solution set of the following Diophantine equations a · x+ b · y = c:

a) 2 · x+ 3 · y = 4,

b) 2 · x+ 4 · y = 3,

c) 2 · x+ 4 · y = 6,

d) 3 · x+ 6 · y = 2,

e) 3 · x+ 6 · y = 9.
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Exercise 7.8. Consider two hourglasses with limit 11 minutes and 5 minutes. Is it possible to measure
an interval of 7 minutes with this pair of hourglasses? If so, how? Is it possible to describe all the
ways in which we measure the interval of 7 minutes?

Exercise 7.9. The head of the scout camp goes to the store to purchases bangers and sausages for
the evening picnic by the camp fire. One sausage costs 11 CZK and one banger 6 CZK. The scout has
only 350 CZK with them.

a) Decide how many bangers and how many sausages they can buy to spend all the money.

b) Find the solution so that each scout has one banger and one sausage (and at the same time the
sum is spent completely).

c) Using the previous result find the possible numbers of scouts in the camp if you know there are at
least 10 of them.

7.2.2 Modular arithmetic

Exercise 7.10. Find the additive inverse −a and a multiplicative inverse a−1 (if it exists) in Zn for
the given a and modulus n:

a) n = 35, a = 12;

b) n = 36, a = 15;

c) n = 42, a = 25;

d) n = 146, a = 75.

Remark 7.30. Note that there is another way to find the inverse of a in Zn: such an element must be
uniquely determined (if it exists) and can therefore be found by brute force – by testing all numbers in
Zn one by one. Verifying by multiplying this number by a we should get 1. This procedure is usually
faster for small modulus like Z3,Z5, . . . . We would not recommend this method in any of the given
examples from the previous exercise.

Exercise 7.11. Find the multiplicative inverse a−1 (if it exists) in Zn for the given a and modulus n:

a) n = 8, a = 3; b) n = 5, a = 4; c) n = 13, a = 9.

Exercise 7.12. Define the addition and the multiplication table of Z4 (remainder system (mod 4)).

a) Discuss the solution set (and the uniqueness of this solution) of the equation a + x ≡ b (mod 4),
where x is undetermined and a, b are arbitrary constants.

b) Discuss the solution set (and the uniqueness of this solution) of the equation a · x ≡ b (mod 4),
where x is undetermined and a, b are arbitrary constants.

Exercise 7.13. Calculate powers in the given modulus:

a) 333 mod 11,

b) 444 mod 13,

c) 555 mod 17,

d) 666 mod 19,

e) 1333 mod 15,

f) 1444 mod 15,

g) 1655 mod 21,

h) 1767 mod 21,

i) 242 162123234† mod 121,.

j) 360 240 142123 mod 120.

†Exponentiation is not associative. By convention, when we write abc

we mean a(bc).
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Exercise 7.14. Find all solutions of the linear congruences below.

a) 2 · x ≡ 3 (mod 7),

b) 6 · x ≡ 4 (mod 3),

c) 9 · x ≡ 1 (mod 256),

d) 3 · x ≡ 2 (mod 340),

e) 4 · x ≡ 4 (mod 12),

f) 14 · x ≡ 7 (mod 35),

g) 39 · x ≡ 27 (mod 123).

Exercise 7.15. Find all solutions of the systems of linear congruences below.

a)
{
x ≡ 2 (mod 5)
x ≡ 1 (mod 3)

b)


x ≡ 3 (mod 5)
x ≡ 4 (mod 7)
x ≡ 7 (mod 11)

c)


x ≡ 3 (mod 8)
x ≡ 7 (mod 12)
x ≡ 4 (mod 15)

d)


x ≡ 4 (mod 6)
x ≡ 6 (mod 8)
x ≡ 10 (mod 20)

e)


2 · x ≡ 3 (mod 5)
3 · x ≡ 4 (mod 7)
5 · x ≡ 7 (mod 11)

Exercise 7.16. Return back to the power 360 240 142123 (mod 120) (see Exercise 7.13 point j)). Now
we apply the Chinese Remainder Theorem to calculate the powers in case the modulus and base are
not co-prime.

Exercise 7.17. A food factory produces the same amount of products per day. The products are
packed in boxes of one of three types – A, B and C (one type throughout the day). When packed
in type A boxes (with a capacity of 32 pieces), 14 products remain unpacked, when packed in type
B boxes (25 pieces each), 16 products remain unpacked and when using box C (27 pieces each), 8
products remain. Unpackaged products can no longer be used the next day, so they are discarded.
Determine the number of products that the factory produces per day and then design the smallest
possible number of products by which it is enough to increase the daily production so that no products
are discarded, regardless of the type of boxes used.

Exercise 7.18. A farmer took eggs to the market in a small cart. On the way to the market place, a
motorcyclist hit the cart and broke all the eggs. The farmer demands 2 000 CZK as a compensation
for the broken eggs. Determine the number of eggs in the cart knowing that:

• there is one egg left when pairing eggs;

• there are two left when packing eggs in groups of 3;

• there are three left when packing eggs in groups of four;

• there are four left when packing eggs in groups of five;

• there are five left when packing eggs in groups of six;

• there are no eggs when packing eggs in groups of seven.

Suppose tht the price per egg is between 2.50 CZK and 4 CZK.
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7.3 More exercises

7.3.1 Integers and primes

Exercise 7.19. Find the solution sets of the following Diophantine equations:

a) 4 · x+ 7 · y = 12,

b) 4 · x+ 6 · y = 12,

c) 51 · x+ 9 · y = 3,

d) 3 · x+ 51 · y = 9,

e) 4 · x+ 6 · y = 20,

f) 13 · x+ 14 · y = 15,

g) 42 · x+ 24 · y = 20,

h) 42 · x+ 24 · y = 10,

i) 6 · x+ 7 · y = 1,

j) 8 · x+ 7 · y = 1,

k) 6 · x+ 8 · y = 1,

l) 35 · x+ 45 · y = 15.

Exercise 7.20. Divisibility Criteria: Formulate criteria of divisibility for 3, 4, 5, 10, 11 and prove
them using number theory and modular arithmetic.

7.3.2 Modular arithmetic

Exercise 7.21. Find all solutions of systems the of linear congruences below.

a)
{

3x ≡ 2 (mod 5)
2x ≡ 1 (mod 3) b)


x ≡ 3 (mod 5)

5x ≡ 4 (mod 7)
9x ≡ 7 (mod 11)

c)
{

4x ≡ 4 (mod 6)
x ≡ 6 (mod 8)

Exercise 7.22. (*) Find the last two digits of the following integers in binary, octal, system with
base 5, and hexadecimal representation:

a) 3401,

b) 4804,

c) 33356,

d) 7403.
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