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Conditioning and stability of an algorithm Recap

Recap: Errors

Definition
Let a number α be an approximate value of a number a.

The absolute error is the value |α− a|.

For a 6= 0, the relative error is |α− a|
|a| .
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Conditioning and stability of an algorithm Systems of linear equations

System of linear equations

We want to solve a system of n linear equations. We write the system in matrix
representation

Ax = b,

where A ∈ Rn,n is regular and b ∈ Rn,1.

This is often a partial subproblem of a larger problem.
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Conditioning and stability of an algorithm Systems of linear equations

Example: system of linear equations (1/2)
Consider two systems of linear equations with 2 unknowns:(

1 1/2
1/2 1/3

)(
x
y

)
=
(
3/2
1

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(
3/2
1

)
.

The solutions are

(x , y)T = (0, 3)T and (x , y)T = (85/52,−35/52)T ≈ (1.6346,−0.67308)T .

Let us try to simulate an error on the input, or during a calculation, by changing

the right side to
(
3/2
5/6

)
.(

1 1/2
1/2 1/3

)(
x
y

)
=
(
3/2
5/6

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(
3/2
5/6

)
.

The solutions change to

(x , y)T = (1, 1)T and (x , y)T = (125/78,−20/39)T ≈ (1.6026,−0.51282)T .

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10 Winter 2024 4 / 28



Conditioning and stability of an algorithm Systems of linear equations

Example: system of linear equations (1/2)
Consider two systems of linear equations with 2 unknowns:(

1 1/2
1/2 1/3

)(
x
y

)
=
(
3/2
1

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(
3/2
1

)
.

The solutions are

(x , y)T = (0, 3)T and (x , y)T = (85/52,−35/52)T ≈ (1.6346,−0.67308)T .

Let us try to simulate an error on the input, or during a calculation, by changing

the right side to
(
3/2
5/6

)
.(

1 1/2
1/2 1/3

)(
x
y

)
=
(
3/2
5/6

)
and

(
1 1/5

1/5 −1

)(
x
y

)
=
(
3/2
5/6

)
.

The solutions change to

(x , y)T = (1, 1)T and (x , y)T = (125/78,−20/39)T ≈ (1.6026,−0.51282)T .

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10 Winter 2024 4 / 28



Conditioning and stability of an algorithm Systems of linear equations

Example: system of linear equations (2/2)

The change in the right side was(
3/2
1

)
−
(
3/2
5/6

)
=
(

0
1/6

)
,

a vector of Euclidean length 1/6 (the relative error is 0.09).

The change in the solution of the first equation was(
0
3

)
−
(
1
1

)
=
(
−1
2

)
(the relative error is 0.75) and the one in the solution of the second equation(

85/52
−35/52

)
−
(
125/78
−20/39

)
=
(

5/156
−25/156

)
(the relative error is 0.09).
Why is it that the first system is more sensitive to this change? Why are the two
relative errors so different?
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Conditioning and stability of an algorithm Systems of linear equations

Norm - reminder
A norm on a vector space V is a mapping ‖ · ‖ : V 7→ R+

0 which satisfies
1. ‖x‖ = 0 ⇒ x = 0,
2. ‖αx‖ = |α| · ‖x‖,
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),

for all x , y ∈ V and all scalars α.

On Rn (or Cn) the most used norm is probably the Euclidean norm:

‖x‖ =
( n∑

i=1
x2

i

) 1
2

,

where x = (x1, x2 . . . , xn) ∈ Rn.

Other commonly used norms include
‖x‖∞ = max

{
|xi | : i ∈ {1, . . . , n}

}
maximum norm,

‖x‖1 =
n∑

i=1
|xi | taxicab or L1 norm.
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Conditioning and stability of an algorithm Systems of linear equations

Matrix norm

Given a vector norm ‖ · ‖, we define the induced matrix norm of the matrix
A ∈ Rn,n (or for A ∈ Cn,n) as follows

‖A‖ = sup
{
‖Ax‖ : x ∈ Rn,1 and ‖x‖ = 1

}
.

Such norm satisfies
‖I‖ = 1,
‖Ax‖ ≤ ‖A‖ · ‖x‖ (norm consistency),
‖AB‖ ≤ ‖A‖ · ‖B‖.
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Conditioning and stability of an algorithm Forward and backzard error

Forward and backward error

Let V be a numerical algorithm whose theoretical (accurate) output is denoted by
V ∗(d) where d is the input.

The result in the finite arithmetic is denoted V (d). Furthermore, denote the
so-called forward error by ∆v := V ∗(d)− V (d).

The least (in a norm) number ∆d such that V (d + ∆d) = V ∗(d) is the
backward error.

d + ∆d

d

V ∗(d)

V (d)

∆d

V

V ∗

V

∆v

If for every input d the backward error is
relatively small, we say that the
algorithm is backward stable.
(“Small” depends on the context.)
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Conditioning and stability of an algorithm Conditioning

Conditioning

The conditioning of a problem expresses the dependence of the output on the
inputs - given a little perturbation δd of the input, we look how the output
changes.

The relative condition number of a problem is

Cr = lim
ε→0+

sup
d+δd ∈D
‖δd‖≤ε

‖V (d + δd)− V (d)‖
‖V (d)‖
‖δd‖
‖d‖

,

where D is the domain of V .

If Cr ≈ 1, then we say that the problem is well-conditioned.
If it is large, we say the problem is ill-conditioned.
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Conditioning and stability of an algorithm Conditioning of the problem

Conditioning of the problem: System of linear equations

Let us see the conditioning of Ax = b. We suppose that the right side b is the
input of the problem, and x is the output.

Given a small perturbation δx we have:

A(x + δx) = Ax + Aδx = b + δb,

where Aδx = δb.

We have ‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖, which implies 1
‖x‖ ≤

‖A‖
‖b‖ .

Furthermore, ‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖ · ‖δb‖.

Finally,
‖δx‖
‖x‖ ≤ ‖A‖ · ‖A

−1‖‖δb‖
‖b‖ ,
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Conditioning and stability of an algorithm Conditioning of the problem

Conditioning of the problem: System of linear equations

‖δx‖
‖x‖ ≤

(
‖A‖ · ‖A−1‖

) ‖δb‖
‖b‖

The number κ(A) = ‖A‖ · ‖A−1‖ is the condition number of the matrix A.

The above inequality reads: the relative error of the results is less than the relative
error of the input times the condition number.

The greater κ(A) is, the more ill-conditioned the problem is.

(Note that b may contain an error coming from its origin, for instance a
measurement.)

Of course, the condition number depends on the chosen norm.
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Conditioning and stability of an algorithm Conditioning of the problem

Example of two sets of linear equations revisited

Let us revisit the example we saw earlier:

A1 =
(

1 1/2
1/2 1/3

)
and A2 =

(
1 1/5
1/5 −1

)
,

The inverses are

A−1
1 =

(
4 −6
−6 12

)
and A−1

2 ≈
(
0.961538 0.192308
0.192308 −0.961538

)
,

To calculate the condition number κ(A) = ‖A‖ · ‖A−1‖ we use the norm ‖A‖∞:

κ(A1) = 3
2 · 18 = 27 and κ(A2) = 18

13 ≈ 1.3846056.

The problem with the matrix A1 is significantly more ill-conditioned than with
the matrix A2. This is in accordance with our previous observations.
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Direct and iterative methods Directive methods

Direct methods

A direct method calculates a solution of a problem in finitely many steps such
that in absolute theoretical precision in gives the exact solution.
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Direct and iterative methods Iterative methods

Idea of iterative methods

Iterative methods look for approximate solutions to mathematical problems by
constructing a sequence of approximate solutions:

x0, x1, x2, . . .

Every following (approximate) solution is derived from the previous:

xk = T (xk−1),

for k > 0 and some mapping T .

The mapping T is chosen so that the sequence (xi ) has a limit which is the
(exact) solution of the problem.

If T is the same for all k, the method is called stationary.
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Direct and iterative methods Description of the iterative method

Basic iterative methods for Ax = b

We will construct a sequence of vectors x0, x1, x2, . . . which will approximate the
solution of Ax = b.

The vector x0 is chosen randomly.
We choose a regular matrix Q and the following terms will be calculated as

Qxk = (Q − A)xk−1 + b

for all k > 0.

The idea: choose the matrix Q so that the sequence (xk) converges to some x∗.
Then,

Qx∗ = (Q − A)x∗ + b

and thus
Ax∗ = b.
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Direct and iterative methods Description of the iterative method

Convergence - choice of Q

We use the equality xk = Q−1((Q − A)xk−1 + b
)
in

xk − x = Q−1((Q − A)xk−1 + b
)
− x

= (I − Q−1A)xk−1 − x + Q−1b
= (I − Q−1A)xk−1 − (I − Q−1A)x
= (I − Q−1A)(xk−1 − x),

where x is the exact solution satisfying Ax = b.

Denote W = I − Q−1A and the error vector ek = xk − x .

We have ek = Wek−1.

The vector ek will be “smaller” than ek−1 if W is “small”.
(“Small” can be determined using norms.)

Since ek = W ke0, to lower the error at each step we need to have lim
k→+∞

W k = 0.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10 Winter 2024 16 / 28



Direct and iterative methods Description of the iterative method

Convergence - choice of Q

We use the equality xk = Q−1((Q − A)xk−1 + b
)
in

xk − x = Q−1((Q − A)xk−1 + b
)
− x

= (I − Q−1A)xk−1 − x + Q−1b
= (I − Q−1A)xk−1 − (I − Q−1A)x
= (I − Q−1A)(xk−1 − x),

where x is the exact solution satisfying Ax = b.

Denote W = I − Q−1A and the error vector ek = xk − x .

We have ek = Wek−1.

The vector ek will be “smaller” than ek−1 if W is “small”.
(“Small” can be determined using norms.)

Since ek = W ke0, to lower the error at each step we need to have lim
k→+∞

W k = 0.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10 Winter 2024 16 / 28



Direct and iterative methods Description of the iterative method

Convergence - choice of Q

We use the equality xk = Q−1((Q − A)xk−1 + b
)
in

xk − x = Q−1((Q − A)xk−1 + b
)
− x

= (I − Q−1A)xk−1 − x + Q−1b
= (I − Q−1A)xk−1 − (I − Q−1A)x
= (I − Q−1A)(xk−1 − x),

where x is the exact solution satisfying Ax = b.

Denote W = I − Q−1A and the error vector ek = xk − x .

We have ek = Wek−1.

The vector ek will be “smaller” than ek−1 if W is “small”.
(“Small” can be determined using norms.)

Since ek = W ke0, to lower the error at each step we need to have lim
k→+∞

W k = 0.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10 Winter 2024 16 / 28



Direct and iterative methods Description of the iterative method

Convergence - choice of Q

We use the equality xk = Q−1((Q − A)xk−1 + b
)
in

xk − x = Q−1((Q − A)xk−1 + b
)
− x

= (I − Q−1A)xk−1 − x + Q−1b
= (I − Q−1A)xk−1 − (I − Q−1A)x
= (I − Q−1A)(xk−1 − x),

where x is the exact solution satisfying Ax = b.

Denote W = I − Q−1A and the error vector ek = xk − x .

We have ek = Wek−1.

The vector ek will be “smaller” than ek−1 if W is “small”.
(“Small” can be determined using norms.)

Since ek = W ke0, to lower the error at each step we need to have lim
k→+∞

W k = 0.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10 Winter 2024 16 / 28



Direct and iterative methods Convergence

Convergence vs. spectral radius

The Spectral radius of a matrix M is the number ρ(M) defined as the greatest
eigenvalues (in absolute value), i.e.,

ρ(M) = max{|λ| : λ is an eigenvalue of M},

Theorem
If M ∈ Cn,n, then

lim
k→+∞

Mk = 0 ⇔ ρ(M) < 1,

Thus, in our case, the method converges if and only if

ρ(W ) < 1,

i.e., all the eigenvalues of the matrix W = I − Q−1A are in absolute value less
than 1.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10 Winter 2024 17 / 28



Direct and iterative methods Convergence

Convergence vs. spectral radius

The Spectral radius of a matrix M is the number ρ(M) defined as the greatest
eigenvalues (in absolute value), i.e.,

ρ(M) = max{|λ| : λ is an eigenvalue of M},

Theorem
If M ∈ Cn,n, then

lim
k→+∞

Mk = 0 ⇔ ρ(M) < 1,

Thus, in our case, the method converges if and only if

ρ(W ) < 1,

i.e., all the eigenvalues of the matrix W = I − Q−1A are in absolute value less
than 1.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10 Winter 2024 17 / 28



Direct and iterative methods Convergence

Convergence vs. spectral radius

The Spectral radius of a matrix M is the number ρ(M) defined as the greatest
eigenvalues (in absolute value), i.e.,

ρ(M) = max{|λ| : λ is an eigenvalue of M},

Theorem
If M ∈ Cn,n, then

lim
k→+∞

Mk = 0 ⇔ ρ(M) < 1,

Thus, in our case, the method converges if and only if

ρ(W ) < 1,

i.e., all the eigenvalues of the matrix W = I − Q−1A are in absolute value less
than 1.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 10 Winter 2024 17 / 28



Direct and iterative methods Convergence

Speed of convergence of ek

How fast is the error vector ek converging to 0?

We have
ek = W ke0.

We estimate in norm

‖ek‖ =
∥∥W ke0

∥∥ ≤ ∥∥W k∥∥ · ‖e0‖ ≤ ‖W ‖k · ‖e0‖ .

The condition of convergence ρ(W ) < 1 does not imply anything on the speed
from the previous estimate.

However, the estimate on the right side is strictly decreasing if ‖W ‖ < 1.
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Direct and iterative methods Convergence

When to stop? (1/2)

The iterative method is stop at the step k if xk reaches some desired precision.

(The desired precision is given by the nature of the problem.)

In the case ‖W ‖ < 1, we know that the sequence (‖ek‖)k is strictly decreasing
and we may stop iterating when

‖ek − ek−1‖ < ε,

where ε is a constant supplied by the user.
This is impractical since we do not have the exact solution.

In the step k we can calculate the so-called residue Axk − b and the
convergence criterion can be set to

‖Axk − b‖ < ε.
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Direct and iterative methods Convergence

When to stop? (2/2)

Instead of calculating the residues, one may use a more efficient criterion

‖xk+1 − xk‖ < ε.

We have

‖ek‖ = ‖xk − x‖ = ‖xk − xk+1 + xk+1 − x‖
≤ ‖xk − xk+1‖+ ‖ xk+1 − x︸ ︷︷ ︸

=ek+1

‖

< ε+ ‖W ‖ · ‖ek‖,

where, supposing ‖W ‖ < 1, the last inequality gives

‖ek‖ <
ε

1− ‖W ‖ .

Thus, this criterion can be effectively used if ‖W ‖ < 1, but not too close to 1.
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Direct and iterative methods Convergence

Finite precision calculations

All ideas so far were made in the theoretical absolute precision.
In finite precision the method may not converge even if ‖W ‖ < 1 due to
rounding errors.

However, an advantage of iterative methods in a finite precision arithmetic is that
at each step the rounding errors from the previous step are “forgotten”. We start
the new iteration with a better approximate solution.

In finite arithmetic the method can diverge even if the problem is not
ill-conditioned.

Thus, in practice, we need another parameter of the method - a maximum
number of iterations. If we reach this number of iterations without satisfying a
convergence criterion, then the method outputs failure.
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Direct and iterative methods Concrete algorithms

Choices of Q

Denote by ai,j the entries of the matrix A and denote

L =


0 0 · · · 0

a2,1 0 · · · 0
...

. . . . . .
...

an,1 · · · an,n−1 0

 and D =


a1,1 0 · · · 0

0 a2,2
. . .

...
...

. . . . . . 0
0 · · · 0 an,n

 .

Denote U so that A = L + D + U.

We will mention the following choices of Q:
Richardson method Q = I,
Jacobi method Q = D,

successive overrelaxation / SOR method Q = 1
ω
D + L.
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Direct and iterative methods Concrete algorithms

Richardson method

Set Q = I.

The recurrence relation is given by

xk = (I − A)xk−1 + b

The convergence is for a narrow class of matrices: A must be close to I so that

‖I − A‖ < 1.
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Direct and iterative methods Concrete algorithms

Jacobi method

Set Q = D.

The recurrence relation is given by

Dxk = (D − A)xk−1 + b = −(L + U)xk−1 + b.

Proposition
If the matrix A is diagonally dominant, then the Jacobi method converges for any
choice of x0.

A matrix is diagonally dominant if, for each row, the sum of the absolute values of
all the entries except the one on the diagonal is less than the absolute value of the
entry on the diagonal.
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Direct and iterative methods Concrete algorithms

SOR method

Set Q = 1
ω
D + L, where ω ∈ R \ {0}.

The recurrence relation is given by(
1
ω
D + L

)
xk =

(
1
ω
D + L− A

)
xk−1 + b =

((
−1 + 1

ω

)
D − U

)
xk−1 + b.

Proposition
For 0 < ω < 2 the SOR method converges if A is symmetric, positive definite and
has positive diagonal entries.

The parameter ω is used to speed up the convergence.
The choice ω = 1 is the Gauss-Seidel method.
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Direct and iterative methods Concrete algorithms

Algorithm

Inputs: matrices A,Q, vector b, precision ε, maximum number of iterations K .

1. choose x̂0 at random

2. for k from 1 to K do

2.1 x̂k+1 = Q−1(Q − A)x̂k + Q−1b

2.2 if ‖Ax̂k − b‖ < ε, return x̂k (or in general if any convergence criterion is
satisfied)

3. return “no solution found after K steps”.
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Direct and iterative methods Concrete algorithms

Demonstration - Jacobi method (1/2)

Let A =
(
2 1
1 4

)
.

∥∥I − D−1A
∥∥ = 1

2 .

We use the Jacobi method to calculate a solution for b = (3, 5)T .
The exact solution is (1, 1)T .

The convergence criterion used is ‖Ax̂k − b‖ < 10−2.

k x̂k ‖Ax̂k − b‖
0 (0.5, 1.5) 1.58113883008
1 (0.75, 1.125) 0.450693909433
2 (0.9375, 1.0625) 0.197642353761
3 (0.96875, 1.015625) 0.0563367386791
4 (0.9921875, 1.0078125) 0.0247052942201
5 (0.99609375, 1.001953125) 0.00704209233489
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Direct and iterative methods Concrete algorithms

Demonstration - Jacobi method (2/2)

...the same problem but with a different x̂0, which is further from the exact
solution.

k x̂k ‖Ax̂k − b‖
0 (−10, 10) 28.1780056072
1 (−3.5, 3.75) 9.01734439844
2 (−0.375, 2.125) 3.5222507009
3 (0.4375, 1.34375) 1.1271680498
4 (0.828125, 1.140625) 0.440281337613
5 (0.9296875, 1.04296875) 0.140896006226
6 (0.978515625, 1.017578125) 0.0550351672016
7 (0.9912109375, 1.00537109375) 0.0176120007782
8 (0.997314453125, 1.002197265625) 0.0068793959002
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