Mathematics for Informatics

Constrained optimization, multivariate integration (lecture 3 of 12)

Francesco Dolce

dolcefra@fit.cvut.cz

Czech Technical University in Prague

Winter 2024/2025

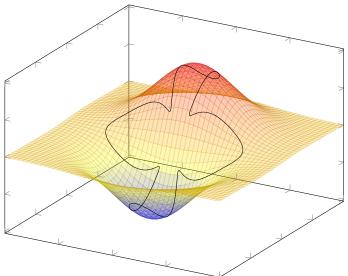
created: September 11, 2024, 14:22

Outline

- Constrained optimization
- Reminder: integration of functions of 1 variable
- 2-variate function integration

Motivation

Find the maximum and minimum points when walking along the black line:



The problem

Let $f: \mathbb{R}^n \to \mathbb{R}$.

Find (local) maxima and minima of f subject to

$$\begin{cases} g_1(x_1, x_2, \dots, x_n) &= 0 \\ g_2(x_1, x_2, \dots, x_n) &= 0 \\ &\vdots \\ g_p(x_1, x_2, \dots, x_n) &= 0. \end{cases}$$

Set
$$\mathcal{G} = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid g_i(x_1, x_2, \dots, x_n) = 0, i = 1, 2, \dots, p\}.$$

Assumptions

1 The functions f and g_i , with i = 1, 2, ..., p, have continuous second partial derivatives.

Assumptions

- **1** The functions f and g_i , with i = 1, 2, ..., p, have continuous second partial derivatives.
- ② The gradients $\nabla g_1(x), \nabla g_2(x), \dots, \nabla g_p(x)$ form a linearly independent set for all $x \in \mathcal{G}$.

Assumptions

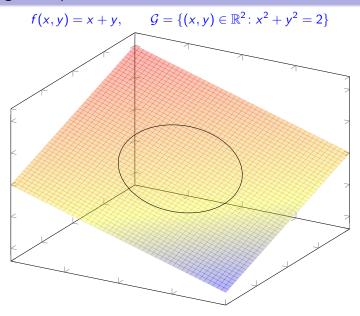
- **1** The functions f and g_i , with i = 1, 2, ..., p, have continuous second partial derivatives.
- **②** The gradients $\nabla g_1(x), \nabla g_2(x), \dots, \nabla g_p(x)$ form a linearly independent set for all $x \in \mathcal{G}$.

Example

Are the gradients of the following functions linearly independent?

$$g_1(x,y) = 2x + xy^2,$$
 $g_2(x,y) = 4x + 2xy^2,$ $g_3(x,y) = 2xy^2 + 4y^2,$ $g_4(x,y) = 2x + 3xy^2 + 4y^2.$

Running example



Necessary condition

Theorem

Assume f has a local extremum in $x^* = (x_1^*, \dots, x_n^*) \in \mathcal{G}$ subject to \mathcal{G} . Then there exist numbers μ_1^*, \dots, μ_p^* such that the Lagrangian function L given by

$$L(x_1,...,x_n,\mu_1,...,\mu_p) = f(x_1,...,x_n) + \sum_{i=1}^p \mu_i g_i(x_1,...,x_n)$$

has zero partial derivatives with respect to $x_1, ..., x_n$ at the point x^* . In other words, the following system is true:

$$\begin{cases}
\frac{\partial f}{\partial x_1}(x^*) + \mu_1^* \frac{\partial g_1}{\partial x_1}(x^*) + \dots + \mu_p^* \frac{\partial g_p}{\partial x_1}(x^*) &= 0 \\
\vdots &\vdots \\
\frac{\partial f}{\partial x_n}(x^*) + \mu_1^* \frac{\partial g_1}{\partial x_n}(x^*) + \dots + \mu_p^* \frac{\partial g_p}{\partial x_n}(x^*) &= 0
\end{cases}$$

Sufficient condition

Theorem

Let $x^*=(x_1^*,\ldots,x_n^*)\in\mathbb{R}^n$ and $\mu^*=(\mu_1^*,\ldots,\mu_p^*)\in\mathbb{R}^p$ such that

- the Lagrangian function $L(x_1, ..., x_n, \mu_1, ..., \mu_p)$ has zero partial derivatives with respect to $x_1, ..., x_n$ at the point $(x^*, \mu^*) \in \mathbb{R}^{n+p}$;
- the Lagrangian function $L(x_1, ..., x_n, \mu_1, ..., \mu_p)$ has zero partial derivatives with respect to $\mu_1, ..., \mu_p$ at the point $(x^*, \mu^*) \in \mathbb{R}^{n+p}$;
- lacktriangledown for all non-zero $y \in \mathbb{R}^n$ satisfying $y \cdot \nabla g_i(x^*) = 0$ for i = 1, 2, ..., p we have

$$y\left(\nabla^2 f(x^*) + \sum_{i=1}^p \mu_i^* \nabla^2 g_i(x^*)\right) y^T > 0.$$

Thus, the function f has a strict local minimum at x^* (subject to G).

Sufficient condition

Theorem

Let $x^*=(x_1^*,\ldots,x_n^*)\in\mathbb{R}^n$ and $\mu^*=(\mu_1^*,\ldots,\mu_p^*)\in\mathbb{R}^p$ such that

- the Lagrangian function $L(x_1, ..., x_n, \mu_1, ..., \mu_p)$ has zero partial derivatives with respect to $x_1, ..., x_n$ at the point $(x^*, \mu^*) \in \mathbb{R}^{n+p}$;
- **1** the Lagrangian function $L(x_1, \ldots, x_n, \mu_1, \ldots, \mu_p)$ has zero partial derivatives with respect to μ_1, \ldots, μ_p at the point $(x^*, \mu^*) \in \mathbb{R}^{n+p}$;
- lacktriangledown for all non-zero $y \in \mathbb{R}^n$ satisfying $y \cdot \nabla g_i(x^*) = 0$ for $i = 1, 2, \dots, p$ we have

$$y\left(\nabla^2 f(x^*) + \sum_{i=1}^p \mu_i^* \nabla^2 g_i(x^*)\right) y^T > 0.$$

Thus, the function f has a strict local minimum at x^* (subject to G).

If we replace in (iii) the condition "> 0" by "< 0", we obtain a sufficient condition of a strict local maximum.

Example

Find maxima and minima of f(x, y) = x + y subject to $x^2 + y^2 = 2$.

Integration of functions of 1 variable

Let $f : \mathbb{R} \to \mathbb{R}$ and a < b.

Recall what does $\int_a^b f(x) dx$ mean, if it exists.

What is its geometrical meaning?

Let $\Delta = (x_i)_{i=0}^n$ define a partition of [a, b]: $a = x_0 < x_1 < \ldots < x_n = b$.

Let
$$\Delta = (x_i)_{i=0}^n$$
 define a partition of $[a, b]$: $a = x_0 < x_1 < \ldots < x_n = b$.

Set
$$F_{\Delta,i} = \max_{x \in [x_{i-1},x_i]} f(x)$$
 and $f_{\Delta,i} = \min_{x \in [x_{i-1},x_i]} f(x)$.

Let $\Delta = (x_i)_{i=0}^n$ define a partition of [a, b]: $a = x_0 < x_1 < \ldots < x_n = b$.

Set
$$F_{\Delta,i} = \max_{x \in [x_{i-1},x_i]} f(x)$$
 and $f_{\Delta,i} = \min_{x \in [x_{i-1},x_i]} f(x)$.

The upper Darboux sum of f with respect to the partition Δ is

$$S_{f,\Delta} = \sum_{i=1}^{n} F_{\Delta,i} \cdot (x_i - x_{i-1})$$

and the lower Darboux sum of f with respect to the partition Δ is

$$s_{f,\Delta} = \sum_{i=1}^n f_{\Delta,i} \cdot (x_i - x_{i-1}).$$

The upper Darboux integral (of f over [a, b]) is

$$D_f = \inf\{S_{f,\Delta} : \Delta \text{ is a partition of } [a, b]\}$$

and the lower Darboux integral (of f over [a, b]) is

$$d_f = \sup\{s_{f,\Delta} : \Delta \text{ is a partition of } [a,b]\}.$$

The upper Darboux integral (of f over [a, b]) is

$$D_f = \inf\{S_{f,\Delta} : \Delta \text{ is a partition of } [a, b]\}$$

and the lower Darboux integral (of f over [a, b]) is

$$d_f = \sup\{s_{f,\Delta} : \Delta \text{ is a partition of } [a,b]\}.$$

If $D_f = d_f$, we call this value the Darboux integral of f over [a, b], and denote it

$$\int_a^b f(x) \, \mathrm{d}x = D_f = d_f.$$

We say that f is (Darboux-)integrable over [a, b].

The upper Darboux integral (of f over [a, b]) is

$$D_f = \inf\{S_{f,\Delta} : \Delta \text{ is a partition of } [a, b]\}$$

and the lower Darboux integral (of f over [a, b]) is

$$d_f = \sup\{s_{f,\Delta} : \Delta \text{ is a partition of } [a,b]\}.$$

If $D_f = d_f$, we call this value the Darboux integral of f over [a, b], and denote it

$$\int_a^b f(x) \, \mathrm{d}x = D_f = d_f.$$

We say that f is (Darboux-)integrable over [a, b].

This is equivalent to the Riemann integral and to Riemann integrability.

A few properties

If f is continuous on [a, b], then it is integrable on [a, b].

A few properties

If f is continuous on [a, b], then it is integrable on [a, b].

Let f be integrable on [a, b] and on [b, c] (with a < b < c).

We have that f is integrable on [a, c] and

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx.$$

Primitive function

Let F(x) be a real function which is continuous on [a, b] and differentiable on (a, b).

Let f(x) be a real function which is continuous on (a, b) and such that

$$\forall x \in (a, b), \quad F'(x) = f(x).$$

Such function F is called a primitive function of f on (a, b).

Primitive function

Let F(x) be a real function which is continuous on [a, b] and differentiable on (a, b).

Let f(x) be a real function which is continuous on (a, b) and such that

$$\forall x \in (a, b), \quad F'(x) = f(x).$$

Such function F is called a primitive function of f on (a, b).

Example

Find a primitive function on (0,1) of the function $f(x) = 2x + x^2$.

Newton's formula

Let f be integrable on [a, b] and F(x) be (one of) its primitive function on (a, b). We have

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

Newton's formula

Let f be integrable on [a, b] and F(x) be (one of) its primitive function on (a, b). We have

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

Example

Calculate
$$\int_0^1 (2x + x^2) dx$$
.

Substitution

Let $\alpha, \beta \in \mathbb{R}$ such that $\alpha < \beta$.

Let φ be a real function differentiable on (α, β) such that φ and φ' are both continuous on $[\alpha, \beta]$.

Let f be continuous on $[\varphi(\alpha), \varphi(\beta)]$ (or if $\varphi(\alpha) \leq \varphi(\beta)$, otherwise continuous on $[\varphi(\beta), \varphi(\alpha)]$).

If $f(\varphi(t)) \varphi'(t)$ is integrable on $[\alpha, \beta]$, then

$$\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$

Substitution

Let $\alpha, \beta \in \mathbb{R}$ such that $\alpha < \beta$.

Let φ be a real function differentiable on (α, β) such that φ and φ' are both continuous on $[\alpha, \beta]$.

Let f be continuous on $[\varphi(\alpha), \varphi(\beta)]$ (or if $\varphi(\alpha) \leq \varphi(\beta)$, otherwise continuous on $[\varphi(\beta), \varphi(\alpha)]$).

If $f(\varphi(t)) \varphi'(t)$ is integrable on $[\alpha, \beta]$, then

$$\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$

Example

Calculate
$$\int_{1}^{2} \frac{2 \ln(t)^2}{t} dt$$
.

Integration by parts

Let f and g be differentiable on (a, b) and let f, g, f', g' be continuous on [a, b]. We have

$$\int_{a}^{b} f'(x)g(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx.$$

Integration by parts

Let f and g be differentiable on (a, b) and let f, g, f', g' be continuous on [a, b]. We have

$$\int_{a}^{b} f'(x)g(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx.$$

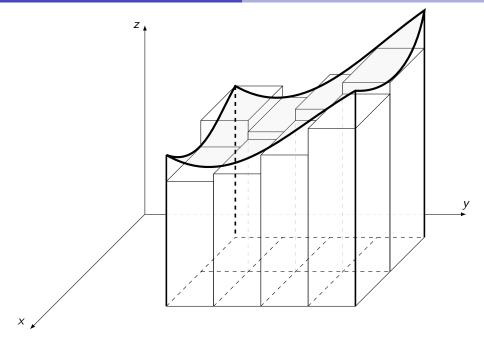
Example

Calculate
$$\int_{1}^{2} 10x \ln x \, dx$$
.

2-variate function

Suppose we have a function $f: D \to \mathbb{R}$, where $D = [a, b] \times [c, d]$.

Imagine that this function represents (part of) a surface of some object. What is the volume of this object?



Let $\Delta_x = (x_i)_{i=0}^n$ define a partition of [a, b] and $\Delta_y = (y_j)_{j=0}^m$ a partition of [c, d].

Then, $\Delta = \Delta_x \times \Delta_y$ defines a partitions of $D = [a, b] \times [c, d]$ into rectangles.

Let $\Delta_x = (x_i)_{i=0}^n$ define a partition of [a, b] and $\Delta_y = (y_j)_{j=0}^m$ a partition of [c, d].

Then, $\Delta = \Delta_x \times \Delta_y$ defines a partitions of $D = [a, b] \times [c, d]$ into rectangles.

Set

- $F_{\Delta,i,j} = \max\{f(x,y): (x,y) \in [x_{i-1},x_i] \times [y_{j-1},y_j]\}$ and
- $f_{\Delta,i,j} = \min\{f(x,y): (x,y) \in [x_{i-1},x_i] \times [y_{j-1},y_j]\}.$

Let $\Delta_x = (x_i)_{i=0}^n$ define a partition of [a, b] and $\Delta_y = (y_j)_{j=0}^m$ a partition of [c, d].

Then, $\Delta = \Delta_x \times \Delta_y$ defines a partitions of $D = [a, b] \times [c, d]$ into rectangles.

Set

- $F_{\Delta,i,j} = \max\{f(x,y): (x,y) \in [x_{i-1},x_i] \times [y_{j-1},y_j]\}$ and
- $f_{\Delta,i,j} = \min\{f(x,y): (x,y) \in [x_{i-1},x_i] \times [y_{j-1},y_j]\}.$

The upper Darboux sum of f with respect to the partition Δ is

$$S_{f,\Delta} = \sum_{i=1}^{n} \sum_{j=1}^{m} F_{\Delta,i,j} \cdot (x_i - x_{i-1}) \cdot (y_j - y_{j-1})$$

while the lower Darboux sum of f with respect to the partition Δ is

$$s_{f,\Delta} = \sum_{i=1}^{n} \sum_{i=1}^{m} f_{\Delta,i,j} \cdot (x_i - x_{i-1}) \cdot (y_j - y_{j-1}).$$

The upper Darboux integral (of f over D) is

$$D_f = \inf \{ S_{f,\Delta} : \Delta \text{ is a (rectangular) partition of } D \}$$

and the lower Darboux integral (of f over D is

$$d_f = \sup\{s_{f,\Delta} \colon \Delta \text{ is a (rectangular) partition of } D\}.$$

The upper Darboux integral (of f over D) is

$$D_f = \inf \{ S_{f,\Delta} : \Delta \text{ is a (rectangular) partition of } D \}$$

and the lower Darboux integral (of f over D is

$$d_f = \sup\{s_{f,\Delta} : \Delta \text{ is a (rectangular) partition of } D\}.$$

If $D_f = d_f$, we call this value the (double) Darboux integral of f over D, and denote it

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = D_f = d_f.$$

We say that f is (Darboux-)integrable over D.

How to calculate a double integral?

The following statement can be derived from the definition.

Theorem

If f is integrable over $D = [a, b] \times [c, d]$ and one of the integrals

$$\int_a^b \left(\int_c^d f(x,y) \, \mathrm{d}y \right) \mathrm{d}x \quad \text{or} \quad \int_c^d \left(\int_a^b f(x,y) \, \mathrm{d}x \right) \mathrm{d}y$$

exists, then it is equal to

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

How to calculate a double integral?

The following statement can be derived from the definition.

Theorem

If f is integrable over $D = [a, b] \times [c, d]$ and one of the integrals

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx \quad or \quad \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) dy$$

exists, then it is equal to

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Example

Calculate the double integral over $D = [0,2] \times [-1,2]$ of the function $f(x,y) = x^2y + 1$.

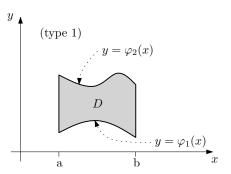
And if D is not a rectangle?

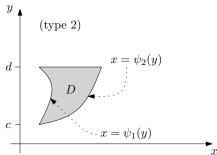
The definition is very similar: we approximate D using smaller and smaller rectangular areas...

Special types of domain D (1/2)

We will consider the following two types of the domain D.

- (type 1) $x \in [a, b]$ and y is bounded by continuous functions $\varphi_1(x)$ and $\varphi_2(x)$;
- (type 2) $y \in [c, d]$ and x is bounded by continuous functions $\psi_1(y)$ and $\psi_2(y)$.





Special types of domain D (2/2)

Double integrals over such D are calculated as follows.

Theorem

If the integral on the right side exists, then we have (for such a domain D):

• if D is of type 1, then

$$\iint_D f(x,y) dx dy = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy \right) dx;$$

• if D is of type 2, then

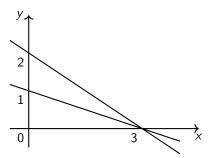
$$\iint_D f(x,y) dx dy = \int_c^d \left(\int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx \right) dy.$$

Example

$$\iint_D \frac{x+y}{2} \, \mathrm{d}x \mathrm{d}y.$$

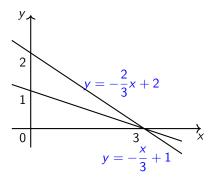
Example

$$\iint_D \frac{x+y}{2} \, \mathrm{d}x \mathrm{d}y.$$



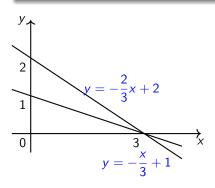
Example

$$\iint_D \frac{x+y}{2} \, \mathrm{d}x \mathrm{d}y.$$



Example

$$\iint_D \frac{x+y}{2} \, \mathrm{d}x \mathrm{d}y.$$



$$\int_0^3 \int_{1-\frac{x}{3}}^{2-\frac{2}{3}x} \frac{x+y}{2} \, \mathrm{d}y \, \mathrm{d}x = \dots = \frac{3}{2}$$