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Reminder and Motivation

Reminder of the last lecture

Hierarchy of structures of type “a set and a binary operation”

grupoid

semigroup

monoid

group

Abelian group

associativity

neutral element

inverse element

commutativity
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Reminder and Motivation

Example (1/4)

Example
Consider the set Z12 = {0, 1, 2, . . . , 11} with the addition mod 12.

the set Z12 is closed under this operation, i.e., it is a groupoid;

the operation is associative, so it is a ;
the number 0 is the neutral element, so it is a ;
the inverse of k 6= 0 is 12− k and the inverse of 0 is 0, so it is a ;
the operation is commutative, thus we have an Abelian group.

Let Zn = {0, 1, 2, . . . , n − 1} be the set of the residue classes modulo n.

The group (Zn, +(mod n)) is the additive group modulo n; it is denoted by Z+
n .
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Reminder and Motivation

Example (2/4)

Question: Which other set M forms a group with the addition (mod 12)?

In order for the operation to be well defined, we must have M ⊂ Z12:

Question (refined): Which subset of Z12 forms a group with the addition
(mod 12)?

Answer: There are quite a lot of them. To find out how to discover them, let us
ask this subquestion:

Sub-question: Which is the smallest subset of Z12 that forms a group with
addition (mod 12) and contains the number 2?
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Reminder and Motivation

Example (3/4)

We are looking for a set M ⊂ Z12 such that 2 ∈ M and (M, +(mod 12)) is a group:

M must be closed under addition mod 12:
it must contain 2 + 2 = 4, 2 + 4 = 6, 4 + 6 = 10, . . .
the set {0, 2, 4, 6, 8, 10} is closed under this operation, so we have a groupoid;

the operation remains associative, so it is a semigroup;

0 remains the neutral element, so it is a monoid;

each element has its inverse in the set (the set is closed under inversion), so
it is a group.

The wanted set is M = {0, 2, 4, 6, 8, 10}.
We say that M is a subgroup generated by the set {2}.
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Reminder and Motivation

Example (4/4)

Similarly, as we have generated the set from the element 2, we can proceed for
others elements of Z12:

{0} → {0}
{1} → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ← {11}

{2} → {0, 2, 4, 6, 8, 10}

← {10}
{3} → {0, 3, 6, 9} ← {9}
{4} → {0, 4, 8} ← {8}
{5} → {0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7} ← {7}
{6} → {0, 6}

Back to the original question: there exist 6 different sets M ⊆ Z12 such that
(M, +(mod 12)) is a group.
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Subgroups Definition and basic properties

Definition of subgroup

Definition
Let G = (M, ◦) be a group.
A subgroup of the group G is a pair H = (N, ◦) such that:

N ⊆ M and N 6= ∅,
H is a group.

Idea of substructures with the same properties as the original structure:
compare for instance with a subspace of a linear (vector) space.

Similarly, we can define subgroupoids, subsemigroups, submonoids,. . .

A binary operation in the group G = (M, ◦) is a function from M ×M to M.
The operation in a subgroup H = (N, ◦) is, to be precise, the restriction of
this operation to the set N × N.
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Subgroups Definition and basic properties

Trivial and proper subgroups

In each group G = (M, ◦), there always exist at least two subgroups (if M
contains only one element the two coincide):

the group containing only the neutral element: ({e}, ◦), and
the group itself G = (M, ◦).

These two groups are the trivial subgroups.
Other subgroups are non-trivial or proper subgroups.

Question
If H is a subgroup of a group G, is the neutral element of H identical to the
neutral element of G?
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Subgroups Definition and basic properties

Intersection of subgroups

Theorem
Let H1,H2, . . . ,Hn, whith n ≥ 1, be subgroups of a group G = (M, ◦). Then

H ′ =
⋂

i=1,2,...,n
Hi

is also a subgroup of G.
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Subgroups Definition and basic properties

Power of an element

Definition
Let G = (M, ◦) be a group with neutral element e. We define for each element
a ∈ M and each positive n ∈ N the n-th power of the element a as

a0 = e
an = a ◦ a ◦ · · · ◦ a︸ ︷︷ ︸

n times
a−n = (a−1)n = a−1 ◦ a−1 ◦ · · · ◦ a−1︸ ︷︷ ︸

n times

Note that a ◦ a ◦ · · · ◦ a can by written without brackets thanks to associativity
(for a non-associative operation the result would depend on the order. . . ).
For all n,m ∈ N the following “natural” equalities are true:

an+m = an ◦ am,
anm = (an)m.

For the additive notation of a group G = (M, +), we define the n-th multiple of
the element a and we denote it by n × a (resp. −n × a = n × (−a)).
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Subgroups Order of a subgroup

Order of a (sub)group

Definition
The order of a (sub)group G = (M, ◦), denoted |G |, is its number of elements. If
M is an infinite set, the order is infinite.
According to the order we distinguish between finite and infinite groups.

Example
The group Z+

12 is of order 12. It has 6 subgroups:
two trivial: {0} and {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
and four proper: {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, and {0, 2, 4, 6, 8, 10}.

of order 1, 2, 3, 4, 6 and 12.
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Subgroups Order of a subgroup

(Left) cosets of a subgroup

Let G be a group and H be one of its subgroups.
The (left) coset of H in G with respect to an element g ∈ G is the set

gH = {gh : h ∈ H} (or g + H in additive notation)

Example
Let us consider the subgroup H = {0, 3, 6, 9} of Z12.
Find g + H for all g ∈ Z12.

The index of H in G , denoted [G : H], is the number of different cosets of H in G .

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2024 13 / 26



Subgroups Order of a subgroup

(Left) cosets of a subgroup

Let G be a group and H be one of its subgroups.
The (left) coset of H in G with respect to an element g ∈ G is the set

gH = {gh : h ∈ H} (or g + H in additive notation)

Example
Let us consider the subgroup H = {0, 3, 6, 9} of Z12.
Find g + H for all g ∈ Z12.

The index of H in G , denoted [G : H], is the number of different cosets of H in G .

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2024 13 / 26



Subgroups Order of a subgroup

Lagrange’s Theorem

Theorem
Let H be a subgroup of a finite group G. The order of H divides the order of G.

More precisely, |G | = [G : H] · |H|.

This statement connects the abstract structure of a group with divisibility and
also with the notion of prime numbers!
Consequence: A group with prime order has only trivial subgroups!
To prove Lagrange’s Theorem we need the following lemma.

Lemma
For all a, b ∈ G one has |aH| = |bH|.

Question
Let G be a group of order n and k ∈ N be such that k|n.
Is there any subgroup of G of order k?
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Subgroups Groups generated by a set

Group generated by a set (1/2)

Question: How to find the smallest subgroup of a group G = (M, ◦) containing a
given nonempty set N ⊂ M?

Definition
Let G = (M, ◦) be a group and N ⊂ M a nonempty set. The smallest subgroup of
G containing N is the subgroup generated by N and is denoted by 〈N〉.

In particular, for a singleton N = {a} we use the notation 〈a〉 = 〈{a}〉.

Example
For the group Z+

12, we have proven that 〈2〉 = ({0, 2, 4, 6, 8, 10}, +mod 12).

Definition
If for a set M it holds that 〈M〉 = G, we say that M is a generating set of G.
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Subgroups Groups generated by a set

Group generated by a set (2/2)

Example
The group Z+

12 is generated, for instance, by the sets {1} and {5}, i.e.

〈1〉 = 〈5〉 = Z+
12.

Theorem
Let G = (M, ◦) be a group and N ⊂ M a nonempty set. The following holds:

the subgroup 〈N〉 equals the intersection of all subgroups containing N, i.e.

〈N〉 =
⋂
{H : H is a subgroup of G containingN}

all elements in 〈N〉 can be obtained by means of “group span”, i.e.,{
ak1
1 ◦ a

k2
2 ◦ · · · akn

n : n ∈ N, ai ∈ N, ki ∈ Z
}

.
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Cyclic groups Examples

Groups generated by one element (1/2)

We have seen that the additive group Z+
12 is equal to 〈1〉, 〈5〉, 〈7〉, and 〈11〉.

The following theorem generalize this fact.

Theorem
An additive group modulo n is equal to 〈k〉 if and only if k and n are coprimes.

Proof.
This statement is a consequence of a general theorem which will be proven later
and of the fact that Z+

n = 〈1〉 for all n ≥ 2.
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Cyclic groups Examples

Groups generated by one element (2/2)

The group ({1, 2, . . . , p − 1}, ·(mod p)), where p is a prime number, is the
multiplicative group modulo p, denoted Z×p .

Example
Is there a one-element set generating the group Z×11?

Yes, for example 〈2〉 = Z×11.

On the other hand, 〈3〉 = ({1, 3, 4, 5, 9}, ·(mod 11)).

Finding the generator(s) of a multiplicative group Z×p is more complicated than
for an additive group Z+

n .
Multiplicative groups have more complicated and interesting structure.
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Cyclic groups Definition

Definition of cyclic group

Definition
A group G = (M, ◦) is cyclic if there exists an element a ∈ M such that 〈a〉 = G.
This element is a generator of the cyclic group.

Z+
n is a cyclic group for every n and its generators are all positive numbers

k ≤ n coprime with n.

The infinite group (Z, +) is cyclic and it has just two generators: 1 and −1.

Z×11 is cyclic, and 2 is a generator.
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Cyclic groups Definition

Why “cyclic”?

Consider the multiplicative group Z×13.

If we repeatedly compose the generator 2 with itself we successively get all
elements of the group: 21 = 2, 22 = 4, 23 = 8, 24 = 3, . . ., 212 = 1.
The 13-th power is again the number 2 and so the sequence of powers is indeed
stuck in a cycle.

21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)

subgroups: {1, 3, 4, 9, 10, 12} ,{1, 5, 8, 12} ,{1, 3, 9} ,{1, 12}.
generators: 2, 6, 7, 11.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2024 20 / 26



Cyclic groups Definition

Why “cyclic”?

Consider the multiplicative group Z×13.

If we repeatedly compose the generator 2 with itself we successively get all
elements of the group: 21 = 2, 22 = 4, 23 = 8, 24 = 3, . . ., 212 = 1.
The 13-th power is again the number 2 and so the sequence of powers is indeed
stuck in a cycle.

21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)

subgroups: {1, 3, 4, 9, 10, 12}

,{1, 5, 8, 12} ,{1, 3, 9} ,{1, 12}.
generators: 2, 6, 7, 11.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2024 20 / 26



Cyclic groups Definition

Why “cyclic”?

Consider the multiplicative group Z×13.

If we repeatedly compose the generator 2 with itself we successively get all
elements of the group: 21 = 2, 22 = 4, 23 = 8, 24 = 3, . . ., 212 = 1.
The 13-th power is again the number 2 and so the sequence of powers is indeed
stuck in a cycle.

21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)

subgroups: {1, 3, 4, 9, 10, 12} ,{1, 5, 8, 12}

,{1, 3, 9} ,{1, 12}.
generators: 2, 6, 7, 11.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2024 20 / 26



Cyclic groups Definition

Why “cyclic”?

Consider the multiplicative group Z×13.

If we repeatedly compose the generator 2 with itself we successively get all
elements of the group: 21 = 2, 22 = 4, 23 = 8, 24 = 3, . . ., 212 = 1.
The 13-th power is again the number 2 and so the sequence of powers is indeed
stuck in a cycle.

21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)

subgroups: {1, 3, 4, 9, 10, 12} ,{1, 5, 8, 12} ,{1, 3, 9}

,{1, 12}.
generators: 2, 6, 7, 11.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2024 20 / 26



Cyclic groups Definition

Why “cyclic”?

Consider the multiplicative group Z×13.

If we repeatedly compose the generator 2 with itself we successively get all
elements of the group: 21 = 2, 22 = 4, 23 = 8, 24 = 3, . . ., 212 = 1.
The 13-th power is again the number 2 and so the sequence of powers is indeed
stuck in a cycle.

21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)

subgroups: {1, 3, 4, 9, 10, 12} ,{1, 5, 8, 12} ,{1, 3, 9} ,{1, 12}.

generators: 2, 6, 7, 11.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2024 20 / 26



Cyclic groups Definition

Why “cyclic”?

Consider the multiplicative group Z×13.

If we repeatedly compose the generator 2 with itself we successively get all
elements of the group: 21 = 2, 22 = 4, 23 = 8, 24 = 3, . . ., 212 = 1.
The 13-th power is again the number 2 and so the sequence of powers is indeed
stuck in a cycle.

21 22 23 24 25 26 27 28 29 210 211 212

2 4 8 3 6 12 11 9 5 10 7 1
(mod 13)

subgroups: {1, 3, 4, 9, 10, 12} ,{1, 5, 8, 12} ,{1, 3, 9} ,{1, 12}.
generators: 2, 6, 7, 11.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2024 20 / 26



Cyclic groups Fermat’s Theorem

Fermat’s Theorem (1/2)

Theorem
In a cyclic group G = (M, ◦) of order n, for all elements a ∈ M, it holds that

an = e

Where e is the neutral element of G.

Proof.
Consider a sequence of elements from M: a, a2, a3, a4, . . .
Denote q the smallest number such that aq = e. Clearly q ≤ n (why?!)
The set a, a2, · · · , aq is the subgroup 〈a〉 and has order q.
By Lagrange’s Theorem, we have that q divides n, i.e,. there exists k ∈ N such
that n = qk.
We have an = aqk = (aq)k = ek = e.
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Proof.
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Denote q the smallest number such that aq = e. Clearly q ≤ n (why?!)
The set a, a2, · · · , aq is the subgroup 〈a〉 and has order q.
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Cyclic groups Fermat’s Theorem

Fermat’s Theorem (2/2)

Z×p is always a cyclic group (it is not trivial to prove it) and its order is p − 1.

Applying the previous theorem to Z×p we obtain the well-known Fermat’s Little
Theorem.

Corollary (Fermat’s Little Theorem)
For an arbitrary prime number p and an arbitrary 1 ≤ a < p we have that

ap−1 ≡ 1 (mod p).
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Cyclic groups Find the generators

How to find all generators (1/2)

Generally, to find all generators is not an easy task (e.g., in groups Z×p we are not
able to do it algorithmically); but if we have one, it is easy to find all the others.

Theorem
If (G , ◦) is a cyclic group of order n and a is one of its generator, then ak is a
generator if and only if k and n are coprime.

To prove the previous theorem we use the following

Lemma
Let D = {mk + `n | m, ` ∈ Z}.
Then gcd(k, n) = min{|a| | a ∈ D \ {0}}.
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Cyclic groups Find the generators

How to find all generators (2/2)

Corollary
In a cyclic group of order n, the number of all generators is equal to ϕ(n).

Where ϕ is the Euler’s (totient) function, which assigns to each integer n the
number of integers less than n that are coprime with n

Z×p is a cyclic group of order p − 1 and thus it has ϕ(p − 1) generators.

An effective algorithm for evaluating ϕ(n) does not exist; if it existed, we would
be able to find the integer factorization of arbitrarily large n and RSA would not
be safe!
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Cyclic groups Subgroups of cyclic groups

Subgroups of cyclic group are cyclic

Theorem
Any subgroup of a cyclic group is again a cyclic group.

Consider again the multiplicative group Z×13.
subgroups: {1, 3, 4, 9, 10, 12} , {1, 5, 8, 12} , {1, 3, 9} , {1, 12}.
generators: 2, 6, 7, 11.
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Cyclic groups Order of an element

Order of an element

Let G be a group and g ∈ G .
The order of g (in G) is the order of the group that is generated by g .

In the finite case, we have the equivalence order(g) = #〈g〉.

Example
Find the order of all elements in Z×5 and in Z×7 .
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