Mathematics for Informatics Algebra: Homomorphisms, permutations (lecture 6 of 12)

$\mathsf{Francesco}\ \mathrm{Dolce}$

dolcefra@fit.cvut.cz

Czech Technical University in Prague

Winter 2024/2025

created: September 11, 2024, 14:37

Homomorphisms

Motivation

The same groups and distinct elements (1/5)

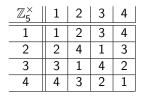
\mathbb{Z}_5^{\times}	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

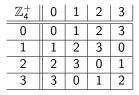
\mathbb{Z}_4^+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Homomorphisms

Motivation

The same groups and distinct elements (1/5)





order: 4

order: 4



 \mathbb{Z}_{4}^{+}

order: 4

subgroups: $\{1\}$, $\{1,4\}$, $\{1,2,3,4\}$

order: 4

subgroups: $\{0\}$, $\{0,2\}$, $\{0,1,2,3\}$



order: 4

subgroups: $\{1\}$, $\{1,4\}$, $\{1,2,3,4\}$ neutral element: 1

\mathbb{Z}_4^+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

order: 4

subgroups: $\{0\}$, $\{0,2\}$, $\{0,1,2,3\}$ neutral element: 0



order: 4

subgroups: $\{1\}$, $\{1,4\}$, $\{1,2,3,4\}$ neutral element: 1

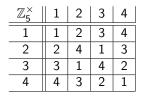
inverse elements:

$$1^{-1} = 1, 2^{-1} = 3, 3^{-1} = 2, 4^{-1} = 4.$$

\mathbb{Z}_4^+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

order: 4

subgroups: {0}, {0,2}, {0,1,2,3} neutral element: 0 inverse elements: $\begin{array}{c} -0 = 0, & -1 = 3, \\ -2 = 2, & -3 = 1. \end{array}$



order: 4

subgroups: $\{1\}$, $\{1,4\}$, $\{1,2,3,4\}$ neutral element: 1

inverse elements:

$$1^{-1} = 1, 2^{-1} = 3, 3^{-1} = 2, 4^{-1} = 4.$$

\mathbb{Z}_4^+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

order: 4

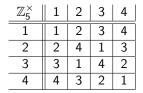
subgroups: {0}, {0,2}, {0,1,2,3} neutral element: 0 inverse elements: $\begin{array}{c} -0 = 0, \quad -1 = 3, \\ -2 = 2, \quad -3 = 1. \end{array}$

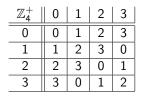
Aren't these two groups in fact the same group differing only in the "names" of their elements?

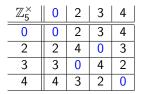
			ms

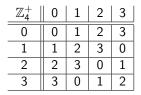
Motivation

The same groups and distinct elements (2/5)

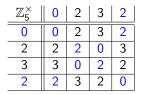


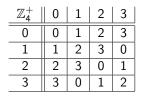




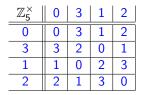


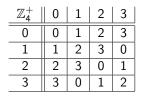
• The neutral element has very special and unique properties: we rename 1 to 0.



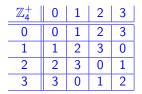


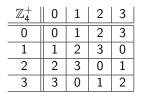
- The neutral element has very special and unique properties: we rename 1 to 0.
- If the complete structure should be preserved, then the only two-elements subgroup $\{1,4\}$ (in \mathbb{Z}_5^{\times}) must correspond to the subgroup $\{0,2\}$ (in \mathbb{Z}_4^+): we map $4 \leftrightarrow 2$.





- The neutral element has very special and unique properties: we rename 1 to 0.
- If the complete structure should be preserved, then the only two-elements subgroup $\{1,4\}$ (in \mathbb{Z}_5^{\times}) must correspond to the subgroup $\{0,2\}$ (in \mathbb{Z}_4^+): we map $4 \leftrightarrow 2$.
- Now, it remains to rename only 2 and 3; we can check that both remaining possibilities work; we choose, for instance, 3 ↔ 1 and 2 ↔ 3.





- The neutral element has very special and unique properties: we rename 1 to 0.
- If the complete structure should be preserved, then the only two-elements subgroup $\{1,4\}$ (in \mathbb{Z}_5^{\times}) must correspond to the subgroup $\{0,2\}$ (in \mathbb{Z}_4^+): we map $4 \leftrightarrow 2$.
- Now, it remains to rename only 2 and 3; we can check that both remaining possibilities work; we choose, for instance, 3 ↔ 1 and 2 ↔ 3.
- It suffices to reorder the rows...and we have the Cayley table of \mathbb{Z}_4^+ .

We have found a way to rename the elements in one table to gain an exact copy of the other table (after rearranging rows and columns).

Motivation

The same groups and distinct elements (3/5)

We have found a way to rename the elements in one table to gain an exact copy of the other table (after rearranging rows and columns).

This renaming is actually an **injective** mapping of the set $\{1, 2, 3, 4\}$ **onto** the set $\{0, 1, 2, 3\}$; let us denote it φ_1 :

 $\varphi_1(1) = 0, \qquad \varphi_1(2) = 3, \qquad \varphi_1(3) = 1, \qquad \varphi_1(4) = 2.$

We have found a way to rename the elements in one table to gain an exact copy of the other table (after rearranging rows and columns).

This renaming is actually an **injective** mapping of the set $\{1, 2, 3, 4\}$ **onto** the set $\{0, 1, 2, 3\}$; let us denote it φ_1 :

 $\varphi_1(1) = 0, \qquad \varphi_1(2) = 3, \qquad \varphi_1(3) = 1, \qquad \varphi_1(4) = 2.$

We have pointed out that the mapping φ_2 works as well:

 $\varphi_2(1) = 0, \qquad \varphi_2(2) = 1, \qquad \varphi_2(3) = 3, \qquad \varphi_2(4) = 2.$

We have found a way to rename the elements in one table to gain an exact copy of the other table (after rearranging rows and columns).

This renaming is actually an **injective** mapping of the set $\{1, 2, 3, 4\}$ **onto** the set $\{0, 1, 2, 3\}$; let us denote it φ_1 :

 $\varphi_1(1) = 0, \qquad \varphi_1(2) = 3, \qquad \varphi_1(3) = 1, \qquad \varphi_1(4) = 2.$

We have pointed out that the mapping φ_2 works as well:

 $\varphi_2(1) = 0, \qquad \varphi_2(2) = 1, \qquad \varphi_2(3) = 3, \qquad \varphi_2(4) = 2.$

Would all bijections do the same job? And if not, what makes these two so special?

Homomorphisms

Motivation

The same groups and distinct elements (4/5)

Let us rename the elements of the group \mathbb{Z}_5^{\times} according to the bijection φ_3 :

 $\varphi_3(1) = 0, \qquad \varphi_3(2) = 3, \qquad \varphi_3(3) = 2, \qquad \varphi_3(4) = 1.$

\mathbb{Z}_5^{\times}	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

\mathbb{Z}_4^+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

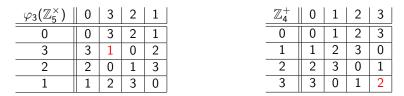
Homomorphisms

Motivation

The same groups and distinct elements (4/5)

Let us rename the elements of the group \mathbb{Z}_5^{\times} according to the bijection φ_3 :

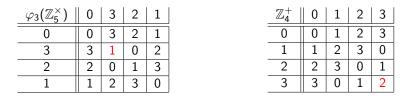
 $\varphi_3(1) = 0, \qquad \varphi_3(2) = 3, \qquad \varphi_3(3) = 2, \qquad \varphi_3(4) = 1.$



The resulting table is not the Cayley table of the group \mathbb{Z}_4^+ , because, e.g., $3+3 \pmod{4} \neq 1$.

Let us rename the elements of the group \mathbb{Z}_5^{\times} according to the bijection φ_3 :

 $\varphi_3(1) = 0, \qquad \varphi_3(2) = 3, \qquad \varphi_3(3) = 2, \qquad \varphi_3(4) = 1.$



The resulting table is not the Cayley table of the group \mathbb{Z}_4^+ , because, e.g., $3+3 \pmod{4} \neq 1$.

The bijection φ_3 does not give rise to the same structure of the group \mathbb{Z}_4^+ ; only φ_1 and φ_2 have this property.

The desired property, which only the bijections φ_1 and φ_2 have, is the following:

for all $n, m \in \{1, 2, 3, 4\}$, we have $\varphi(n \times_{{}^{5}} m) = \varphi(n) +_{{}^{4}} \varphi(m)$,

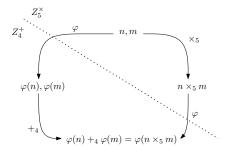
where \times_5 denotes the operation in the group \mathbb{Z}_5^{\times} , and $+_4$ the one in the group \mathbb{Z}_4^+ .

The desired property, which only the bijections φ_1 and φ_2 have, is the following:

for all $n, m \in \{1, 2, 3, 4\}$, we have $\varphi(n \times_{{}^{5}} m) = \varphi(n) +_{{}^{4}} \varphi(m)$,

where \times_5 denotes the operation in the group \mathbb{Z}_5^{\times} , and $+_4$ the one in the group \mathbb{Z}_4^+ .

In words: If we apply the operation \times_5 to two arbitrary elements of the group \mathbb{Z}_5^{\times} and then we send the result to \mathbb{Z}_4^+ by φ , we obtain the same result as when we first transform by φ the elements to \mathbb{Z}_4^+ and **then** apply the operation $+_4$.



Homomorphism and isomorphism

Definition

Let $G = (M, \circ_G)$ and $H = (N, \circ_H)$ be two groupoids. The mapping $\varphi : M \to N$ is a homomorphism from G to H if

for all $x, y \in M$, we have $\varphi(x \circ_{{}_{G}} y) = \varphi(x) \circ_{{}_{H}} \varphi(y)$.

If, moreover, φ is injective (resp. surjective, resp. bijective) we say that φ is a monomorphism (resp. epimorphism, resp. isomorphism).

Homomorphism and isomorphism

Definition

Let $G = (M, \circ_G)$ and $H = (N, \circ_H)$ be two groupoids. The mapping $\varphi : M \to N$ is a homomorphism from G to H if

for all $x, y \in M$, we have $\varphi(x \circ_{{}_{G}} y) = \varphi(x) \circ_{{}_{H}} \varphi(y)$.

If, moreover, φ is injective (resp. surjective, resp. bijective) we say that φ is a monomorphism (resp. epimorphism, resp. isomorphism).

A homomorphism preserves the structure given by the binary operation: the result is the same if we first apply the operation and then the homomorphism or if we proceed inversely.

The only thing needed to define a homomorphism is that the set is closed under the binary operation; this is why we have defined homomorphism for the most general structures, i.e., groupoids.

Isomorphic groups

Definition

If there exists an isomorphism between two groups, these groups are isomorphic.

Isomorphic groups

Definition

If there exists an isomorphism between two groups, these groups are isomorphic.

Example

The two groups \mathbb{Z}_5^{\times} and \mathbb{Z}_4^+ are isomorphic. We have even found two distinct isomorphisms: φ_1 and φ_2 .

Isomorphic groups

Definition

If there exists an isomorphism between two groups, these groups are isomorphic.

Example

The two groups \mathbb{Z}_5^{\times} and \mathbb{Z}_4^+ are isomorphic. We have even found two distinct isomorphisms: φ_1 and φ_2 .

Isomorphic groups have the same order.

Theorem

Let φ be a homomorphism from a group $G = (M, \circ_G)$ to a group $H = (N, \circ_H)$. The group $\varphi(G) = (\varphi(M), \circ_H)$ is a subgroup of H.

Theorem

Let φ be a homomorphism from a group $G = (M, \circ_G)$ to a group $H = (N, \circ_H)$. The group $\varphi(G) = (\varphi(M), \circ_H)$ is a subgroup of H.

Proof.

Each element in $\varphi(G)$ can be written as $\varphi(x)$ for some $x \in M$.

Theorem

Let φ be a homomorphism from a group $G = (M, \circ_G)$ to a group $H = (N, \circ_H)$. The group $\varphi(G) = (\varphi(M), \circ_H)$ is a subgroup of H.

Proof.

Each element in $\varphi(G)$ can be written as $\varphi(x)$ for some $x \in M$.

• For all $x, y, z \in M$ we have that

 $(\varphi(x) \circ_{\scriptscriptstyle H} \varphi(y)) \circ_{\scriptscriptstyle H} \varphi(z) = \varphi(x \circ_{\scriptscriptstyle G} y) \circ_{\scriptscriptstyle H} \varphi(z) = \varphi((x \circ_{\scriptscriptstyle G} y) \circ_{\scriptscriptstyle G} z) =$ $= \varphi(x \circ_{\scriptscriptstyle G} (y \circ_{\scriptscriptstyle G} z)) = \varphi(x) \circ_{\scriptscriptstyle H} \varphi(y \circ_{\scriptscriptstyle G} z) = \varphi(x) \circ_{\scriptscriptstyle H} (\varphi(y) \circ_{\scriptscriptstyle H} \varphi(z))$

Theorem

Let φ be a homomorphism from a group $G = (M, \circ_G)$ to a group $H = (N, \circ_H)$. The group $\varphi(G) = (\varphi(M), \circ_H)$ is a subgroup of H.

Proof.

Each element in $\varphi(G)$ can be written as $\varphi(x)$ for some $x \in M$.

• For all $x, y, z \in M$ we have that

 $(\varphi(x) \circ_{\scriptscriptstyle H} \varphi(y)) \circ_{\scriptscriptstyle H} \varphi(z) = \varphi(x \circ_{\scriptscriptstyle G} y) \circ_{\scriptscriptstyle H} \varphi(z) = \varphi((x \circ_{\scriptscriptstyle G} y) \circ_{\scriptscriptstyle G} z) =$ $= \varphi(x \circ_{\scriptscriptstyle G} (y \circ_{\scriptscriptstyle G} z)) = \varphi(x) \circ_{\scriptscriptstyle H} \varphi(y \circ_{\scriptscriptstyle G} z) = \varphi(x) \circ_{\scriptscriptstyle H} (\varphi(y) \circ_{\scriptscriptstyle H} \varphi(z))$

• Denote by e_{G} the neutral element in G. Then $\varphi(e_{G})$ is the neutral element in $\varphi(G)$ because, for all $x \in M$, we have $\varphi(e_{G}) \circ_{H} \varphi(x) = \varphi(e_{G} \circ_{G} x) = \varphi(x)$.

Theorem

Let φ be a homomorphism from a group $G = (M, \circ_G)$ to a group $H = (N, \circ_H)$. The group $\varphi(G) = (\varphi(M), \circ_H)$ is a subgroup of H.

Proof.

Each element in $\varphi(G)$ can be written as $\varphi(x)$ for some $x \in M$.

• For all $x, y, z \in M$ we have that

 $(\varphi(x) \circ_{\scriptscriptstyle H} \varphi(y)) \circ_{\scriptscriptstyle H} \varphi(z) = \varphi(x \circ_{\scriptscriptstyle G} y) \circ_{\scriptscriptstyle H} \varphi(z) = \varphi((x \circ_{\scriptscriptstyle G} y) \circ_{\scriptscriptstyle G} z) =$ $= \varphi(x \circ_{\scriptscriptstyle G} (y \circ_{\scriptscriptstyle G} z)) = \varphi(x) \circ_{\scriptscriptstyle H} \varphi(y \circ_{\scriptscriptstyle G} z) = \varphi(x) \circ_{\scriptscriptstyle H} (\varphi(y) \circ_{\scriptscriptstyle H} \varphi(z))$

• Denote by e_{G} the neutral element in G. Then $\varphi(e_{G})$ is the neutral element in $\varphi(G)$ because, for all $x \in M$, we have $\varphi(e_{G}) \circ_{H} \varphi(x) = \varphi(e_{G} \circ_{G} x) = \varphi(x)$.

• It can be shown similarly that the inverse of $\varphi(x)$ is $\varphi(x^{-1})$.

Consequences of the previous theorem and its proof:

• A homomorphism always maps the neutral element of one group to the neutral element of the other group.

Consequences of the previous theorem and its proof:

- A homomorphism always maps the neutral element of one group to the neutral element of the other group.
- Inverse elements are preserved as well: $\varphi(x^{-1}) = \varphi(x)^{-1}$.

Consequences of the previous theorem and its proof:

- A homomorphism always maps the neutral element of one group to the neutral element of the other group.
- Inverse elements are preserved as well: $\varphi(x^{-1}) = \varphi(x)^{-1}$.

Example $\begin{array}{ccc} \varphi:\mathbb{Z}_{4}^{+} & \to & \mathbb{Z}_{8}^{+} \\ & n & \mapsto & 2n \end{array}$ is a homomorphism and $\varphi(\mathbb{Z}_{4}^{+})$ is the subgroup $\{0,2,4,6\} \leq \mathbb{Z}_{8}^{+}$.

... up to isomorphism (1/2)

Isomorphic groups are in fact identical, they differ only in the names of their elements (as we have seen in the case of groups \mathbb{Z}_4^+ and \mathbb{Z}_5^\times). If we say that there exists one group with a certain property up to isomorphism, it means that all groups with this property are isomorphic to each other. We prove three well-known statements of this kind.

... up to isomorphism (1/2)

Isomorphic groups are in fact identical, they differ only in the names of their elements (as we have seen in the case of groups \mathbb{Z}_4^+ and \mathbb{Z}_5^\times). If we say that there exists one group with a certain property up to isomorphism, it means that all groups with this property are isomorphic to each other. We prove three well-known statements of this kind.

Theorem

- Any two infinite cyclic groups are isomorphic.
- For each $n \in \mathbb{N}$, any two cyclic groups of order n are isomorphic.

... up to isomorphism (1/2)

Isomorphic groups are in fact identical, they differ only in the names of their elements (as we have seen in the case of groups \mathbb{Z}_4^+ and \mathbb{Z}_5^{\times}). If we say that there exists one group with a certain property up to isomorphism, it means that all groups with this property are isomorphic to each other. We prove three well-known statements of this kind.

Theorem

- Any two infinite cyclic groups are isomorphic.
- For each $n \in \mathbb{N}$, any two cyclic groups of order n are isomorphic.

Proof: hint.

Let $G = \langle a \rangle$ be a cyclic group with generator a.

We show that an arbitrary infinite cyclic group is isomorphic to the group $(\mathbb{Z}, +)$, and that an arbitrary cyclic group of order *n* is isomorphic to \mathbb{Z}_n^+ . The rest follows from the transitivity of the relation "to be isomorphic".

... up to isomorphism (1/2)

Isomorphic groups are in fact identical, they differ only in the names of their elements (as we have seen in the case of groups \mathbb{Z}_4^+ and \mathbb{Z}_5^{\times}). If we say that there exists one group with a certain property up to isomorphism, it means that all groups with this property are isomorphic to each other. We prove three well-known statements of this kind.

Theorem

- Any two infinite cyclic groups are isomorphic.
- For each $n \in \mathbb{N}$, any two cyclic groups of order n are isomorphic.

Proof: hint.

Let $G = \langle a \rangle$ be a cyclic group with generator *a*.

We show that an arbitrary infinite cyclic group is isomorphic to the group $(\mathbb{Z}, +)$, and that an arbitrary cyclic group of order n is isomorphic to \mathbb{Z}_n^+ . The rest follows from the transitivity of the relation "to be isomorphic".

 $(\mathbb{Z}, +)$ and \mathbb{Z}_n^+ are the only cyclic groups up to isomorphism.

... up to isomorphism (2/2)

The Klein group is the group $(\mathbb{Z}_2 \times \mathbb{Z}_2, \circ)$, where

 $\mathbb{Z}_2\times\mathbb{Z}_2=\{(0,0),(0,1),(1,0),(1,1)\}$

and \circ is the component-wise addition modulo 2: e.g., $(1,0) \circ (1,1) = (0,1)$.

\ldots up to isomorphism (2/2)

The Klein group is the group $(\mathbb{Z}_2 \times \mathbb{Z}_2, \circ)$, where

 $\mathbb{Z}_2\times\mathbb{Z}_2=\{(0,0),(0,1),(1,0),(1,1)\}$

and \circ is the component-wise addition modulo 2: e.g., $(1,0) \circ (1,1) = (0,1)$.

The Klein group is not cyclic and thus cannot be isomorphic to \mathbb{Z}_4^+ ! It is possible to show this (try it, it is easy):

Theorem

There exists only two groups of order 4 which are not isomorphic.

 \mathbb{Z}_4^+ and the Klein group are the only two groups of order 4 up to isomorphism.

The symmetric group S_n of the set of all permutations over $\{1, 2, 3, ..., n\}$ with the operation of composition.

The symmetric group S_n of the set of all permutations over $\{1, 2, 3, ..., n\}$ with the operation of composition.

• A (*n*-)permutation is a bijection of the set {1,2,3,...,*n*} to itself, so S_n is the set of bijections on {1,2,3,...,*n*}.

The symmetric group S_n of the set of all permutations over $\{1, 2, 3, ..., n\}$ with the operation of composition.

- A (*n*-)permutation is a bijection of the set $\{1, 2, 3, ..., n\}$ to itself, so S_n is the set of bijections on $\{1, 2, 3, ..., n\}$.
- Each permutation $\pi \in S_n$ can be defined by listing its values:

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \pi(1) & \pi(2) & \pi(3) & \cdots & \pi(n) \end{pmatrix}$$
.

The first row could by deleted, and so, e.g., $(1 \ 2 \ 4 \ 3 \ 5) \in S_5$ is the permutation swapping elements 3 and 4.

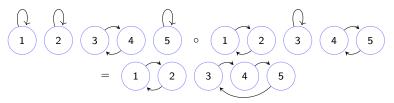
The symmetric group S_n of the set of all permutations over $\{1, 2, 3, ..., n\}$ with the operation of composition.

- A (*n*-)permutation is a bijection of the set $\{1, 2, 3, ..., n\}$ to itself, so S_n is the set of bijections on $\{1, 2, 3, ..., n\}$.
- Each permutation $\pi \in S_n$ can be defined by listing its values:

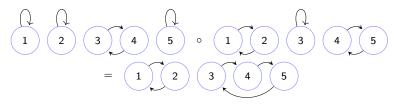
$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \pi(1) & \pi(2) & \pi(3) & \cdots & \pi(n) \end{pmatrix}.$$

The first row could by deleted, and so, e.g., $(1 \ 2 \ 4 \ 3 \ 5) \in S_5$ is the permutation swapping elements 3 and 4.

• Composition of permutations: $(1 \ 2 \ 4 \ 3 \ 5) \circ (2 \ 1 \ 3 \ 5 \ 4) = (2 \ 1 \ 4 \ 5 \ 3).$



• Composition of permutations: $(1 \ 2 \ 4 \ 3 \ 5) \circ (2 \ 1 \ 3 \ 5 \ 4) = (2 \ 1 \ 4 \ 5 \ 3).$



• The composition of permutations is associative, the permutation $(1 \ 2 \ 3 \ \cdots n)$ is the neutral element, and the inverse element is the inverse permutation. Hence, S_n is a group of order $n! = n \cdot (n-1) \cdots 2 \cdot 1$.

Group of permutations

Subgroups of the symmetric group S_n are called groups of permutations.

Example

The permutation $(1 \ 2 \ 4 \ 3 \ 5) \in S_5$ swapping the elements 3 and 4 generates a subgroup of S_5 containing two elements: $(1 \ 2 \ 4 \ 3 \ 5)$ and $(1 \ 2 \ 3 \ 4 \ 5)$.

Group of permutations

Subgroups of the symmetric group S_n are called groups of permutations.

Example

The permutation $(1 \ 2 \ 4 \ 3 \ 5) \in S_5$ swapping the elements 3 and 4 generates a subgroup of S_5 containing two elements: $(1 \ 2 \ 4 \ 3 \ 5)$ and $(1 \ 2 \ 3 \ 4 \ 5)$.

The structure of the subgroups of S_n is very (in some sense maximally) rich:

Theorem (Cayley)

Each finite group is isomorphic to some group of permutations.

Proof: hint only for interested.

Let *a* be an element of a group *G* of order *n* with a binary operation \circ . Put $\pi_a(x) = a \circ x$. Since in any group we can divide uniquely, π_a is a bijection and thus a permutation. The desired monomorphism is the mapping defined for each element *a* in this way: $\varphi(a) = \pi_a$.